893 resultados para lumped-element filter
Resumo:
Neural differentiation of embryonic stem cells (ESCs) requires coordinated repression of the pluripotency regulatory program and reciprocal activation of the neurogenic regulatory program. Upon neural induction, ESCs rapidly repress expression of pluripotency genes followed by staged activation of neural progenitor and differentiated neuronal and glial genes. The transcriptional factors that underlie maintenance of pluripotency are partially characterized whereas those underlying neural induction are much less explored, and the factors that coordinate these two developmental programs are completely unknown. One transcription factor, REST (repressor element 1 silencing transcription factor), has been linked with terminal differentiation of neural progenitors and more recently, and controversially, with control of pluripotency. Here, we show that in the absence of REST, coordination of pluripotency and neural induction is lost and there is a resultant delay in repression of pluripotency genes and a precocious activation of both neural progenitor and differentiated neuronal and glial genes. Furthermore, we show that REST is not required for production of radial glia-like progenitors but is required for their subsequent maintenance and differentiation into neurons, oligodendrocytes, and astrocytes. We propose that REST acts as a regulatory hub that coordinates timely repression of pluripotency with neural induction and neural differentiation.
Resumo:
Particle filters are fully non-linear data assimilation techniques that aim to represent the probability distribution of the model state given the observations (the posterior) by a number of particles. In high-dimensional geophysical applications the number of particles required by the sequential importance resampling (SIR) particle filter in order to capture the high probability region of the posterior, is too large to make them usable. However particle filters can be formulated using proposal densities, which gives greater freedom in how particles are sampled and allows for a much smaller number of particles. Here a particle filter is presented which uses the proposal density to ensure that all particles end up in the high probability region of the posterior probability density function. This gives rise to the possibility of non-linear data assimilation in large dimensional systems. The particle filter formulation is compared to the optimal proposal density particle filter and the implicit particle filter, both of which also utilise a proposal density. We show that when observations are available every time step, both schemes will be degenerate when the number of independent observations is large, unlike the new scheme. The sensitivity of the new scheme to its parameter values is explored theoretically and demonstrated using the Lorenz (1963) model.
Resumo:
Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in an hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main precursor of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homestasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature.
Resumo:
The time discretization in weather and climate models introduces truncation errors that limit the accuracy of the simulations. Recent work has yielded a method for reducing the amplitude errors in leapfrog integrations from first-order to fifth-order. This improvement is achieved by replacing the Robert--Asselin filter with the RAW filter and using a linear combination of the unfiltered and filtered states to compute the tendency term. The purpose of the present paper is to apply the composite-tendency RAW-filtered leapfrog scheme to semi-implicit integrations. A theoretical analysis shows that the stability and accuracy are unaffected by the introduction of the implicitly treated mode. The scheme is tested in semi-implicit numerical integrations in both a simple nonlinear stiff system and a medium-complexity atmospheric general circulation model, and yields substantial improvements in both cases. We conclude that the composite-tendency RAW-filtered leapfrog scheme is suitable for use in semi-implicit integrations.
Resumo:
Currently, infrared filters for astronomical telescopes and satellite radiometers are based on multilayer thin film stacks of alternating high and low refractive index materials. However, the choice of suitable layer materials is limited and this places limitations on the filter performance that can be achieved. The ability to design materials with arbitrary refractive index allows for filter performance to be greatly increased but also increases the complexity of design. Here a differential algorithm was used as a method for optimised design of filters with arbitrary refractive indices, and then materials are designed to these specifications as mono-materials with sub wavelength structures using Bruggeman’s effective material approximation (EMA).
Resumo:
In this paper we propose and analyse a hybrid numerical-asymptotic boundary element method for the solution of problems of high frequency acoustic scattering by a class of sound-soft nonconvex polygons. The approximation space is enriched with carefully chosen oscillatory basis functions; these are selected via a study of the high frequency asymptotic behaviour of the solution. We demonstrate via a rigorous error analysis, supported by numerical examples, that to achieve any desired accuracy it is sufficient for the number of degrees of freedom to grow only in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods. This appears to be the first such numerical analysis result for any problem of scattering by a nonconvex obstacle. Our analysis is based on new frequency-explicit bounds on the normal derivative of the solution on the boundary and on its analytic continuation into the complex plane.
Resumo:
For certain observing types, such as those that are remotely sensed, the observation errors are correlated and these correlations are state- and time-dependent. In this work, we develop a method for diagnosing and incorporating spatially correlated and time-dependent observation error in an ensemble data assimilation system. The method combines an ensemble transform Kalman filter with a method that uses statistical averages of background and analysis innovations to provide an estimate of the observation error covariance matrix. To evaluate the performance of the method, we perform identical twin experiments using the Lorenz ’96 and Kuramoto-Sivashinsky models. Using our approach, a good approximation to the true observation error covariance can be recovered in cases where the initial estimate of the error covariance is incorrect. Spatial observation error covariances where the length scale of the true covariance changes slowly in time can also be captured. We find that using the estimated correlated observation error in the assimilation improves the analysis.
Resumo:
This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier.
Resumo:
We propose and analyse a hybrid numerical–asymptotic hp boundary element method (BEM) for time-harmonic scattering of an incident plane wave by an arbitrary collinear array of sound-soft two-dimensional screens. Our method uses an approximation space enriched with oscillatory basis functions, chosen to capture the high-frequency asymptotics of the solution. We provide a rigorous frequency-explicit error analysis which proves that the method converges exponentially as the number of degrees of freedom N increases, and that to achieve any desired accuracy it is sufficient to increase N in proportion to the square of the logarithm of the frequency as the frequency increases (standard BEMs require N to increase at least linearly with frequency to retain accuracy). Our numerical results suggest that fixed accuracy can in fact be achieved at arbitrarily high frequencies with a frequency-independent computational cost, when the oscillatory integrals required for implementation are computed using Filon quadrature. We also show how our method can be applied to the complementary ‘breakwater’ problem of propagation through an aperture in an infinite sound-hard screen.
Resumo:
We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numerical-asymptotic boundary element methods. We also make connections to the unified transform method due to A. S. Fokas and co-authors, analysing particular instances of this method, proposed by J. A. De-Santo and co-authors, for problems of acoustic scattering by diffraction gratings.
Resumo:
Timediscretization in weatherandclimate modelsintroduces truncation errors that limit the accuracy of the simulations. Recent work has yielded a method for reducing the amplitude errors in leap-frog integrations from first-order to fifth-order.This improvement is achieved by replacing the Robert–Asselin filter with the Robert–Asselin–Williams (RAW) filter and using a linear combination of unfiltered and filtered states to compute the tendency term. The purpose of the present article is to apply the composite-tendency RAW-filtered leapfrog scheme to semi-implicit integrations. A theoretical analysis shows that the stability and accuracy are unaffected by the introduction of the implicitly treated mode. The scheme is tested in semi-implicit numerical integrations in both a simple nonlinear stiff system and a medium-complexity atmospheric general circulation model and yields substantial improvements in both cases. We conclude that the composite-tendency RAW-filtered leap-frog scheme is suitable for use in semi-implicit integrations.
Resumo:
In general, particle filters need large numbers of model runs in order to avoid filter degeneracy in high-dimensional systems. The recently proposed, fully nonlinear equivalent-weights particle filter overcomes this requirement by replacing the standard model transition density with two different proposal transition densities. The first proposal density is used to relax all particles towards the high-probability regions of state space as defined by the observations. The crucial second proposal density is then used to ensure that the majority of particles have equivalent weights at observation time. Here, the performance of the scheme in a high, 65 500 dimensional, simplified ocean model is explored. The success of the equivalent-weights particle filter in matching the true model state is shown using the mean of just 32 particles in twin experiments. It is of particular significance that this remains true even as the number and spatial variability of the observations are changed. The results from rank histograms are less easy to interpret and can be influenced considerably by the parameter values used. This article also explores the sensitivity of the performance of the scheme to the chosen parameter values and the effect of using different model error parameters in the truth compared with the ensemble model runs.
Resumo:
The disadvantage of the majority of data assimilation schemes is the assumption that the conditional probability density function of the state of the system given the observations [posterior probability density function (PDF)] is distributed either locally or globally as a Gaussian. The advantage, however, is that through various different mechanisms they ensure initial conditions that are predominantly in linear balance and therefore spurious gravity wave generation is suppressed. The equivalent-weights particle filter is a data assimilation scheme that allows for a representation of a potentially multimodal posterior PDF. It does this via proposal densities that lead to extra terms being added to the model equations and means the advantage of the traditional data assimilation schemes, in generating predominantly balanced initial conditions, is no longer guaranteed. This paper looks in detail at the impact the equivalent-weights particle filter has on dynamical balance and gravity wave generation in a primitive equation model. The primary conclusions are that (i) provided the model error covariance matrix imposes geostrophic balance, then each additional term required by the equivalent-weights particle filter is also geostrophically balanced; (ii) the relaxation term required to ensure the particles are in the locality of the observations has little effect on gravity waves and actually induces a reduction in gravity wave energy if sufficiently large; and (iii) the equivalent-weights term, which leads to the particles having equivalent significance in the posterior PDF, produces a change in gravity wave energy comparable to the stochastic model error. Thus, the scheme does not produce significant spurious gravity wave energy and so has potential for application in real high-dimensional geophysical applications.
Resumo:
5-Hydroxymethylcytosine (5hmC), a modified form of cytosine that is considered the sixth nucleobase in DNA, has been detected in mammals and is believed to play an important role in gene regulation. In this study, 5hmC modification was detected in rice by employing a dot-blot assay, and its levels was further quantified in DNA from different rice tissues using liquid chromatography-multistage mass spectrometry (LC-MS/MS/MS). The results showed large intertissue variation in 5hmC levels. The genome-wide profiles of 5hmC modification in three different rice cultivars were also obtained using a sensitive chemical labelling followed by a next-generation sequencing method. Thousands of 5hmC peaks were identified, and a comparison of the distributions of 5hmC among different rice cultivars revealed the specificity and conservation of 5hmC modification. The identified 5hmC peaks were significantly enriched in heterochromatin regions,and mainly located in transposable element (TE) genes, especially around retrotransposons. The correlation analysis of 5hmC and gene expression data revealed a close association between 5hmC and silent TEs. These findings provide a resource for plant DNA 5hmC epigenetic studies and expand our knowledge of 5hmC modification.