943 resultados para loussia felix


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two N-methylphosphonic acid derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized, H4L1 and H6L2. The protonation constants of these compounds and the stability constants of complexes of both ligands with Ni2+, Cu2+ and Zn2+ were determined by potentiometric methods at 298 K and ionic strength 0.10 mol dm(-3) in NMe4NO3. The high overall basicity of both compounds is ascribed to the presence of the phosphonate arms. H-1 and P-31 NMR spectroscopic titrations were performed to elucidate the sequence of protonation, which were complemented by conformational analysis studies. The complexes of these ligands have stability constants of the order of or higher than those formed with ligands having the same macrocyclic backbone but acetate arms. At pH = 7 the highest pM values were found for solutions containing the compound with three acetate groups, followed immediately by those of H6L2, however, as expected, the increasing pH favours the complexes of ligands containing phosphonate groups. The single-crystal structure of Na-2[Cu(HL1)]NO3.8H(2)O has shown that the coordination geometry around the copper atom is a distorted square pyramid. Three nitrogen atoms of the macrocyclic backbone and one oxygen atom from one methylphosphonate arm define the basal plane, and the apical coordination is accomplished via the nitrogen atom trans to the pyridine ring of the macrocycle. To achieve this geometric arrangement, the macrocycle adopts a folded conformation. This structure seems consistent with Uv-vis-NIR spectroscopy for the Ni2+ and the Cu2+ complexes and with the EPR for the latter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New dioxadiaza-, trioxadiaza-, and hexaaza-macrocycles containing rigid dibenzofuran groups (DBF) were prepared by a convenient synthetic route in high yields. The structures of the macrocycles were unequivocally established by electrospray mass spectrometry (ESIMS) studies together with NMR spectroscopy, with the exception of [14](DBF)N-3. The structures of the copper complex of [14](DBF)N-3 and of the diprotonated form of [22](DBF)N2O3 were determined by single crystal X-ray diffraction. Conformational analyses on the free macrocycles [14](DBF)N-3 and [22](DBF)N2O3 as well as on their larger counterparts containing two DBF units were undertaken in order to understand the synthetic findings. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural studies of metal complexes of five ditopic hexaazamacrocycles containing two pyridine rings ([n] py(2)N(4) n = 18, 20, 22, 24 and 26) have been carried out. The synthesis of macrocycles [22]- to [26]- py(2)N(4) are also reported. The protonation constants of the last three compounds and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, and Pb2+ were determined at 25 degreesC in 0.10 mol dm(-3) KNO3 in aqueous solution. Our results with [22] py(2)N(4) show significant differences from those described previously, while [24] py(2)N(4) has not been studied before and [ 26] py2N4 is a new compound. Mononuclear and dinuclear complexes of the divalent metal ions studied with [ 22]- to [26]- py(2)N(4) were found in solution. The stability constants for the ML complexes of the three ligands follow the Irving - Williams order: NiL2+ < CuL2+ >> ZnL2+ > PbL2+, however for the dinuclear complexes the values for Pb2+ complexes are higher than the corresponding values for the Ni2+ and the Zn2+ complexes. The X-ray single crystal structures of the supramolecular aggregates [Cu-2([20] py(2)N(4))(H2O)(4)][Cu(H2O)(6)](SO4)(3) . 3H(2)O ( 1) and [Cu-2([20] py(2)N(4))(CH3CN)(4)][Ni([20] py(2)N(4))](2)(ClO4)(8) . H2O (2), which are composed of homodinuclear [Cu-2([20] py(2)N(4)])(H2O)(4)](4+) ( 1a) and [Cu-2([20] py(2)N(4)])(CH3CN))(4)](4+) (2a), and mononuclear species, [Cu(H2O)(6)](2+) (1b) and [Ni([20] py(2)N(4))](2+) ( 2b), respectively, assembled by an extensive network of hydrogen bonds, are also reported. In both homodinuclear complexes the copper centres are located at the end of the macrocycle and display distorted square pyramidal coordination environments with the basal plane defined by three consecutive nitrogen donors and one solvent molecule, water in 1a and acetonitrile in 2a. The macrocycle adopts a concertina-type conformation leading to the formation of macrocyclic cavities with the two copper centres separated by intramolecular distances of 5.526(1) and 5.508(7) Angstrom in 1a and 2a, respectively. The mononuclear complex [Ni([20] py(2)N(4)])](2+) displays a distorted octahedral co-ordination environment with the macrocycle wrapping the metal centre in a helical shape. EPR spectroscopy of the copper complexes indicated the presence of mono- and dinuclear species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding properties of dioxadiaza-([17](DBF) N2O2) and trioxadiaza- ([22](DBF)N2O3), macrocyclic ligands containing a rigid dibenzofuran group ( DBF), to metal cations and structural studies of their metal complexes have been carried out. The protonation constants of these two ligands and the stability constants of their complexes with Ca2+, Ba2+, and Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+, were determined at 298.2 K in methanol-water ( 1 : 1, v/v), and at ionic strength 0.10 mol dm(-3) in KNO3. The values of the protonation constants of both ligands are similar, indicating that no cavity size effect is observed. Only mononuclear complexes of these ligands with the divalent metal ions studied were found, and their stability constants are lower than expected, especially for the complexes of the macrocycle with smaller cavity size. However, the Cd2+ complex with [ 17]( DBF) N2O2 exhibits the highest value of stability constant for the whole series of metal ions studied, indicating that this ligand reveals a remarkable selectivity for cadmium(II) in the presence of all the metal ions studied, except copper( II), indicating that this ligand reveals a remarkable selectivity for cadmium( II) in the presence of the mentioned metal ions. The crystal structures of H-2[17](DBF)N2O32+ (diprotonated form of the ligand) and of its cadmium complex were determined by X-ray diffraction. The Cd2+ ion fits exactly inside the macrocyclic cavity exhibiting coordination number eight by coordination to all the donor atoms of the ligand, and additionally to two oxygen atoms from one nitrate anion and one oxygen atom from a water molecule. The nickel( II) and copper( II) complexes with the two ligands were further studied by UV-vis-NIR and the copper( II) complexes also by EPR spectroscopic techniques in solution indicating square-pyramidal structures and suggesting that only one nitrogen and oxygen donors of the ligands are bound to the metal. However an additional weak interaction of the second nitrogen cannot be ruled out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New dioxadiaza- and trioxadiaza-macrocycles containing one rigid dibenzofuran unit (DBF) and N-(2-aminoethyl) pendant arms were synthesized, N,N'-bis(2-aminoethyl)-[17]( DBF) N2O2 (L-1) and N,N'-bis(2-aminoethyl)-[22](DBF)N2O3 (L-2), respectively. The binding properties of both macrocycles to metal ions and structural studies of their metal complexes were carried out. The protonation constants of both compounds and the stability constants of their complexes with Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 298.2 K, in aqueous solutions, and at ionic strength 0.10 mol dm(-3) in KNO3. Mononuclear complexes with both ligands were formed, and dinuclear complexes were only found for L-2. The thermodynamic binding affinities of the metal complexes of L-2 are lower than those of L-1 as expected, but the Pb2+ complexes of both macrocycles exhibit close stability constant values. On the other hand, the binding affinities of Cd2+ and Pb2+ for L-1 are very high, when compared to those of Co2+, Ni2+ and Zn2+. These interesting properties were explained by the presence of the rigid DBF moiety in the backbone of the macrocycle and to the special match between the macrocyclic cavity size and the studied larger metal ions. To elucidate the adopted structures of complexes in solution, the nickel(II) and copper( II) complexes with both ligands were further studied by UV-vis-MR spectroscopy in DMSO-H2O 1 : 1 (v/v) solution. The copper(II) complexes were also studied by EPR spectroscopy in the same mixture of solvents. The crystal structure of the copper complex of L-1 was also determined. The copper(II) displays an octahedral geometry, the four nitrogen atoms forming the equatorial plane and two oxygen atoms, one from the DBF unit and the other one from the ether oxygen, in axial positions. One of the ether oxygens of the macrocycle is out of the coordination sphere. Our results led us to suggest that this geometry is also adopted by the Co2+ to Zn2+ complexes, and only the larger Cd2+ and Pb2+ manage to form complexes with the involvement of all the oxygen atoms of the macrocyclic backbone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of [M(NCCH3)(4)][PF6] (M = Ag, Cu) with the S2P2Me4 ligand in dichloromethane solution led to substitution of all the nitrile ligands by two molecules of the sulfur ligand, affording the new species [Ag(S2P2Me4)(2)][PF6] (1) and [Cu(S2P2Me4)(2)][PF6] (2). The structures of these complexes were determined by single crystal X-ray diffraction. showing the expected tetrahedral coordination around each metal. Density functional theory (DFT) calculations confirmed the different geometries and energies of the free and coordinated ligand, and provided a very good reproduction of the experimental structures, both for Ag and Cu. The lengths of the S=P bonds are barely affected by coordination, indicating that the pi bond is not important in binding to the metal. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New Cu(I) and Ag(I) complexes were prepared by reaction of [M(NCCH3)(4)][X] (M = Cu or Ag; X = BF4 or PF6) with the bidentate chalcogenide ligands Ph2P(E)NHP(E)Ph-2 (E = S, S(2)dppa; E = Se, Se(2)dppa), and dpspf (1, 1'-bis(diphenylselenophosphoryl)ferrocene). Copper and silver behaved differently. While three molecules of either S(2)dppa and Se(2)dppa bind to a distorted tetrahedral Cu-4 cluster, with deprotonation of the ligand, 1:2 complexes of the neutral ligands are formed with Ag(l), with a tetrahedral coordination of the metal. The [Cu-4{Ph2P(Se)NP(Se)Ph-2}(3)](+) clusters assemble as dimers, held together by weak Se...Se distances interactions. Another dimer was observed for the [Ag(dpspf)](+) cation, with two short Ag...Se distances. DFT and MP2 calculations indicated the presence of attracting interactions, reflected in positive Mayer indices (MI). The electrochemistry study of this species showed that both oxidation and reduction took place at silver. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction between [Mo(eta(3)-C3H5)(CO)(2)(NCMe)(2)Br] (1) and the ferrocenylamidobenzimidazole ligands FcCO(NH(2)benzim) (L1) and (FcCO)(2)(NHbenzim) (L2) led to a binuclear (2) and a trinuclear (3) Mo-Fe complex, respectively. The single-crystal X-ray structure of [Mo(eta(3)-C3H5)(CO)(2)(L2)Br] [L2 = {[(eta(5)-C5H5)Fe(eta(5)-C5H4CO)](2)(2-NH-benzimidazol-yl)}] shows that L2 is coordinated to the endo Mo(eta(3)-C3H5)(CO)(2) group in a kappa(2)-N,O-bidentate chelating fashion whereas the Mo-II centre displays a pseudooctahedral environment with Br occupying an equatorial position. Complex 2 was formulated as [MO(eta(3)-C3H5)(CO)(2)(L1)Br] on the basis of a combination of spectroscopic data, elemental analysis, conductivity and DFT calculations. L1 acts as a kappa(2)-N,N-bidentate ligand. In both L1 and L2, the HOMOs are mainly localised on iron while the C=O bond(s) contribute to the LUMO(s) and the next highest energy orbitals are Fe-allyl antibonding orbitals. When the ligands bind to Mo(eta(3)-C3H5)(CO)(2)Br, the greatest difference is that Mo becomes the strongest contributor to the HOMO. Electrochemical studies show that, in complex 2, no electronic interaction exists between the two ferrocenyl ligands and that the first electron has been removed from the Mo-II-centred HOMO. (c) Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Halo functionalisation of calix[4] tubes has been investigated through both derivatisation of individual calix[4]arenes and calix[4] tubes, using classical synthetic methods, to allow preparation of a series of novel derivatives. The solution and solid state properties are in accordance with the constituent calix[4] arenes adopting flattened cone arrangements which on complexation with potassium simplify to a regular cone. Electrospray and H-1 NMR studies, combined with molecular modelling have been used to ascertain the metal binding of this new series of cryptand like ionophores, demonstrating their retained selectivity for binding potassium over other Group 1 metals and the dependence on counter anion in the weak binding of silver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thallium cation complexation by calix[4]tubes has been investigated by a combination of (TI)-T-205, H-1 NMR and ES MS demonstrating the solution formation of a dithallium complex in which the cations are held in the calix[4]arene cavities. In addition, the structure of the complex has been determined in the solid state revealing the cations to be held exclusively by pi-cation interactions. Furthermore, this crystal structure has been used as the basis for molecular dynamics simulations to confirm that binding of the smaller K+ cation in the calix[4]tube cryptand like array occurs via the axial route featuring a g-cation intermediate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The terpenoid chiral selectors dehydroabietic acid, 12,14-dinitrodehydroabietic acid and friedelin have been covalently linked to silica gel yielding three chiral stationary phases CSP 1, CSP 2 and CSP 3, respectively. The enantiodiscriminating capability of each one of these phases was evaluated by HPLC with four families of chiral aromatic compounds composed of alcohols, amines, phenylalanine and tryptophan amino acid derivatives and beta-lactams. The CSP 3 phase, containing a selector with a large friedelane backbone is particularly suitable for resolving free alcohols and their derivatives bearing fluorine substituents, while CSP 2 with a dehydroabietic architecture is the only phase that efficiently discriminates 1, 1'-binaphthol atropisomers. CSP 3 also gives efficient resolution of the free amines. All three phases resolve well the racemates of N-trifluoracetyl and N-3,5-dinitrobenzoyl phenylalanine amino acid ester derivatives. Good enantioseparation of beta-lactams and N-benzoyl tryptophan amino acid derivatives was achieved on CSP 1. In order to understand the structural factors that govern the chiral molecular recognition ability of these phases, molecular dynamics simulations were carried out in the gas phase with binary diastereomeric complexes formed by the selectors of CSP 1 and CSP 2 and several amino acid derivatives. Decomposition of molecular mechanics energies shows that van der Waals interactions dominate the formation of the diastereomeric transient complexes while the electrostatic binding interactions are primarily responsible for the enantioselective binding of the (R)- and (S)-analytes. Analysis of the hydrogen bonds shows that electrostatic interactions are mainly associated with the formation of N-(HO)-O-...=C enantio selective hydrogen bonds between the amide binding sites from the selectors and the carbonyl groups of the analytes. The role of mobile phase polarity, a mixture of n-hexane and propan-2-ol in different ratios, was also evaluated through molecular dynamics simulations in explicit solvent. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of FcCOC1 (Fc = (C5H5) Fe(C5H4)) with benzimidazole or imidazole in 1: 1 ratio gives the ferrocenyl derivatives FcCO(benzim) (L1) or FcCO(im) (L2), respectively. Two molecules of L1 or L2 can replace two nitrile ligands in [Mo(eta(3)-C3H5)( CO)(2)(CH3CN)(2)Br] or [Mo(eta(3)-C5H5O)(CO)(2)(CH3CN)(2)Br] leading to the new trinuclear complexes [Mo(eta(3)-C3H5)(CO)(2)(L)(2)Br] (C1 for L = L1; C3 for L = L2) and [Mo(eta(3)-C5H5O)(CO)(2)(L)(2)Br] (C-2 for L = L1; C4 for L = L2) with L1 and L2 acting as N-monodentade ligands. L1, L2 and C2 were characterized by X-ray diffraction studies. [Mo(eta(3)-C5H5O)(CO) 2(L1)(2)Br] was shown to be a trinuclear species, with the two L1 molecules occupying one equatorial and one axial position in the coordination sphere of Mo(II). Cyclic voltammetric studies were performed for the two ligands L1 and L2, as well as for their molybdenum complexes, and kinetic and thermodynamic data for the corresponding redox processes obtained. In agreement with the nature of the frontier orbitals obtained from DFT calculations, L1 and L2 exhibit one oxidation process at the Fe(II) center, while C1, C3, and C4 display another oxidation wave at lower potentials, associated with the oxidation of Mo(II). (C) 2007 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New Pd(II), Pt(II) and Re(V) complexes of 3-aminosalicylic acid (H(2)salNH(2)) and 3-hydroxyantranilic acid (HantOH) have been prepared, cis-[Pt (HsalNH)(PPh3)(2)] center dot 0.25C(2)H(5)OH (1), trans-[PdCl(salNH(2))(PPh3)(2)](2), trans-[ReOI2(HsalNH(2))(PPh3)] center dot (CH3)(2)CO (3), cis-[Pt(HantO)(PPh3)(2)] (4), trans-[PdCl(antOH)(PPh3)(2)] center dot 4H(2)O (5), [PdCl(antOH)(bipy)] center dot C2H5OH (6), [PdCl2(HantOH)(2)] (7) and trans-[ReOI(HantO)(PPh3)(2)] center dot (CH3)(2)CO (8). The crystal structure of complex I was determined showing chelation of HsalNH(2-) through the adjacent nitrogen and oxygen atoms of the amino and phenolate groups. Infrared and H-1 NMR spectroscopic data for the complexes are presented. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactions of [Mo(eta(3)-C3H5)Br(CO)(2)(NCMe)(2)] with the bidentate nitrogen ligands 2-(2'-pyridyl)imidazole (L1), 2-(2'-pyridyl)benzimidazole (L2), N,N'-bis(2'-pyridinecarboxamido)-1,2-ethane (L3), and 2,2'-bisimidazole (L4) led to the new complexes [Mo(eta(3)-C3H5)Br(CO)(2)(L)] (L = L1, 1; L2, 2; L4, 4) and [{Mo(eta(3)-C3H5) Br(CO)(2)}(2)(mu-L-3)] (3). The reaction of complexes 2 and 3 with Tl[CF3SO3] afforded [Mo(eta(3)-C3H5)(CF3SO3)(CO)(2)(L2)] (2T) and [{Mo(eta(3)-C3H5)(CF3SO3)(CO)(2)}(2)(mu-L-3)] (3T). Complexes 3 and 2T were structurally characterized by single crystal X-ray diffraction, showing the facial allyl/carbonyls arrangement and the formation of the axial isomer. In 2T, two molecules are assembled in a hydrogen bond dimer. The four complexes 1-4 were tested as precursors in the catalytic epoxidation of cyclooctene and styrene, in the presence of t-butylhydroperoxide (TBHP), with moderate conversions and turnover frequencies for complexes 1-3 and very low ones for 4. The increasing number of N-H groups in the complexes seems to be responsible for the loss of catalytic activity, compared with other related systems. The cytotoxic activities of all the complexes were evaluated against HeLa cells. The results showed that compounds 1,2,4, and 2T exhibited significant activity, complexes 2 and 2T being particularly promising. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New lanthanide complexes of 3-hydroxypicolinic acid (HpicOH) were prepared: [Ln(H2O)(picOH)(2)(mu-HpicO)].3H(2)O (Ln = Eu, Tb, Er). The complexes were characterized using photoluminescence, infrared, Raman, and H-1 NMR spectroscopy, and elemental analysis. The crystal structure of [Eu(H2O)(picOH)(2)(mu-HpicO)] . 3H(2)O 1 was determined by X-ray diffraction. Compound 1 crystallizes in a monoclinic system with space group P2(1)/c and cell parameters a = 9.105(13) Angstrom, b = 18.796(25) Angstrom, and c = 13.531(17) Angstrom, and beta = 104.86(1) deg. The 3-hydroxypicolinate ligands coordinate through both N,O- or O,O- chelation to the lanthanide ions, as shown by X-ray and spectroscopic results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes; the Eu(III) complex was investigated in more detail. The Eu(III) compound is highly luminescent and acts as a photoactive center in nanocomposite materials whose host matrixes are silica nanoparticles.