943 resultados para loop closure
Resumo:
Peptides corresponding to the immunodominant loop located at residues 135–158 on capsid protein VP1 of foot-and-mouth disease virus (FMDV) generally elicit high levels of anti-peptide and virus-neutralizing antibodies. In some instances, however, the level of neutralizing antibodies is low or even negligible, even though the level of anti-peptide antibodies is high. We have shown previously that the antigenic activity of peptide 141–159 of VP1 of a variant of serotype A can be mimicked by a retro-inverso (all-d retro or retroenantio) peptide analogue. This retro-inverso analogue induced greater and longer-lasting antibody titers than did the corresponding l-peptide. We now show that a single inoculation of the retro-inverso analogue elicits high levels of neutralizing antibodies that persist longer than those induced against the corresponding l-peptide and confer substantial protection in guinea pigs challenged with the cognate virus. In view of the high stability to proteases of retro-inverso peptide analogues and their enhanced immunogenicity, these results have practical relevance in designing potential peptide vaccines.
Resumo:
The stem-loop binding protein (SLBP1) binds the 3′ stem-loop of histone pre-mRNA and is required for efficient processing of histone transcripts in the nucleus. We examined the localization of SLBP1 in the germinal vesicle of Xenopus laevis oocytes. In spread preparations of germinal vesicle contents, an anti-SLBP1 antibody stained coiled bodies and specific chromosomal loci, including terminal granules, axial granules, and some loops. After injection of myc-tagged SLBP1 transcripts into the oocyte cytoplasm, newly translated myc-SLBP1 protein was detectable in coiled bodies within 4 h and in terminal and axial granules by 8 h. To identify the region(s) of SLBP1 necessary for subnuclear localization, we subcloned various parts of the SLBP1 cDNA and injected transcripts of these into the cytoplasm of oocytes. We determined that 113 amino acids at the carboxy terminus of SLBP1 are sufficient for coiled body localization and that disruption of a previously defined RNA-binding domain did not alter this localization. Coiled bodies also contain the U7 small nuclear ribonucleoprotein particle (snRNP), which participates in cleavage of the 3′ end of histone pre-mRNA. The colocalization of SLBP1 and the U7 snRNP in the coiled body suggests coordinated control of their functions, perhaps through a larger histone-processing particle. Some coiled bodies are attached to the lampbrush chromosomes at the histone gene loci, consistent with the view that coiled bodies in the oocyte recruit histone-processing factors to the sites of histone pre-mRNA transcription. The non-histone chromosomal sites at which SLBP1 is found include the genes coding for 5 S rRNA, U1 snRNA, and U2 snRNA, suggesting a wider role for SLBP1 in the biosynthesis of small non-spliced RNAs.
Resumo:
The sterol regulatory element–binding protein-2 (SREBP-2) is produced as a large precursor molecule attached to the endoplasmic reticulum membrane. In response to the sterol depletion, the N-terminal segment of the precursor, which contains a basic helix-loop-helix–leucine zipper domain, is released by two sequential cleavages and is translocated to the nucleus, where it activates the transcription of target genes. The data herein show that released SREBP-2 uses a distinct nuclear transport pathway, which is mediated by importin β. The mature form of SREBP-2 is actively transported into the nucleus when injected into the cell cytoplasm. SREBP-2 binds directly to importin β in the absence of importin α. Ran-GTP but not Ran-GDP causes the dissociation of the SREBP-2–importin β complex. G19VRan-GTP inhibits the nuclear import of SREBP-2 in living cells. In the permeabilized cell in vitro transport system, nuclear import of SREBP-2 is reconstituted only by importin β in conjunction with Ran and its interacting protein p10/NTF2. We further demonstrate that the helix-loop-helix–leucine zipper motif of SREBP-2 contains a novel type of nuclear localization signal, which binds directly to importin β.
Resumo:
Metaphase nucleolar organizer regions (NORs), one of four types of chromosome bands, are located on human acrocentric chromosomes. They contain r-chromatin, i.e., ribosomal genes complexed with proteins such as upstream binding factor and RNA polymerase I, which are argyrophilic NOR proteins. Immunocytochemical and cytochemical labelings of these proteins were used to reveal r-chromatin in situ and to investigate its spatial organization within NORs by confocal microscopy and by electron tomography. For each labeling, confocal microscopy revealed small and large double-spotted NORs and crescent-shaped NORs. Their internal three-dimensional (3D) organization was studied by using electron tomography on specifically silver-stained NORs. The 3D reconstructions allow us to conclude that the argyrophilic NOR proteins are grouped as a fiber of 60–80 nm in diameter that constitutes either one part of a turn or two or three turns of a helix within small and large double-spotted NORs, respectively. Within crescent-shaped NORs, virtual slices reveal that the fiber constitutes several longitudinally twisted loops, grouped as two helical 250- to 300-nm coils, each centered on a nonargyrophilic axis of condensed chromatin. We propose a model of the 3D organization of r-chromatin within elongated NORs, in which loops are twisted and bent to constitute one basic chromatid coil.
Resumo:
The serpins are a family of proteinase inhibitors that play a central role in the control of proteolytic cascades. Their inhibitory mechanism depends on the intramolecular insertion of the reactive loop into β-sheet A after cleavage by the target proteinase. Point mutations within the protein can allow aberrant conformational transitions characterized by β-strand exchange between the reactive loop of one molecule and β-sheet A of another. These loop-sheet polymers result in diseases as varied as cirrhosis, emphysema, angio-oedema, and thrombosis, and we recently have shown that they underlie an early-onset dementia. We report here the biochemical characteristics and crystal structure of a naturally occurring variant (Leu-55–Pro) of the plasma serpin α1-antichymotrypsin trapped as an inactive intermediate. The structure demonstrates a serpin configuration with partial insertion of the reactive loop into β-sheet A. The lower part of the sheet is filled by the last turn of F-helix and the loop that links it to s3A. This conformation matches that of proposed intermediates on the pathway to complex and polymer formation in the serpins. In particular, this intermediate, along with the latent and polymerized conformations, explains the loss of activity of plasma α1-antichymotrypsin associated with chronic obstructive pulmonary disease in patients with the Leu-55–Pro mutation.
Resumo:
DNA binding activity of p53 is crucial for its tumor suppressor function. Our recent studies have shown that four molecules of the DNA binding domain of human p53 (p53DBD) bind the response elements with high cooperativity and bend the DNA. By using A-tract phasing experiments, we find significant differences between the bending and twisting of DNA by p53DBD and by full-length human wild-type (wt) p53. Our data show that four subunits of p53DBD bend the DNA by 32–36°, whereas wt p53 bends it by 51–57°. The directionality of bending is consistent with major groove bends at the two pentamer junctions in the consensus DNA response element. More sophisticated phasing analyses also demonstrate that p53DBD and wt p53 overtwist the DNA response element by ≈35° and ≈70°, respectively. These results are in accord with molecular modeling studies of the tetrameric complex. Within the constraints imposed by the protein subunits, the DNA can assume a range of conformations resulting from correlated changes in bend and twist angles such that the p53–DNA tetrameric complex is stabilized by DNA overtwisting and bending toward the major groove at the CATG tetramers. This bending is consistent with the inherent sequence-dependent anisotropy of the duplex. Overall, the four p53 moieties are placed laterally in a staggered array on the external side of the DNA loop and have numerous interprotein interactions that increase the stability and cooperativity of binding. The novel architecture of the p53 tetrameric complex has important functional implications including possible p53 interactions with chromatin.
Resumo:
Catecholamines, thought to derive from the extrinsic innervation of the ovary, participate in the regulation of ovarian development and mature gonadal function. Recently, intraovarian neurons containing tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, were described in the ovary of nonhuman primates. We now show that the primate ovary expresses both the genes encoding TH and dopamine β-hydroxylase (DBH), the key enzymes in norepinephrine (NE) biosynthesis. Ovarian neurons were identified as a site of TH and DBH gene expression, and surprisingly, oocytes were identified as an exclusive site of DBH synthesis. Oocytes contain neither TH mRNA nor protein, indicating that they are unable to synthesize dopamine (DA). They did, however, express a DA transporter gene identical to that found in human brain. The physiological relevance of this transporter system and DBH in oocytes was indicated by the ability of isolated oocytes to metabolize exogenous DA into NE. Isolated follicles containing oocytes—but not those from which the oocytes had been removed—responded to DA with an elevation in cAMP levels; this elevation was prevented by propranolol, a β-adrenoreceptor antagonist. The results suggest that oocytes and somatic cells are linked by a neuroendocrine loop consisting of NE synthesized in oocytes from actively transported DA and cAMP produced by somatic follicular cells in response to NE-induced β-adrenoreceptor activation.
Resumo:
Abscisic acid (ABA) is a plant hormone involved in the response of plants to reduced water availability. Reduction of guard cell turgor by ABA diminishes the aperture of the stomatal pore and thereby contributes to the ability of the plant to conserve water during periods of drought. Previous work has demonstrated that cytosolic Ca2+ is involved in the signal transduction pathway that mediates the reduction in guard cell turgor elicited by ABA. Here we report that ABA uses a Ca2+-mobilization pathway that involves cyclic adenosine 5′-diphosphoribose (cADPR). Microinjection of cADPR into guard cells caused reductions in turgor that were preceded by increases in the concentration of free Ca2+ in the cytosol. Patch clamp measurements of isolated guard cell vacuoles revealed the presence of a cADPR-elicited Ca2+-selective current that was inhibited at cytosolic Ca2+ ≥ 600 nM. Furthermore, microinjection of the cADPR antagonist 8-NH2-cADPR caused a reduction in the rate of turgor loss in response to ABA in 54% of cells tested, and nicotinamide, an antagonist of cADPR production, elicited a dose-dependent block of ABA-induced stomatal closure. Our data provide definitive evidence for a physiological role for cADPR and illustrate one mechanism of stimulus-specific Ca2+ mobilization in higher plants. Taken together with other recent data [Wu, Y., Kuzma, J., Marechal, E., Graeff, R., Lee, H. C., Foster, R. & Chua, N.-H. (1997) Science 278, 2126–2130], these results establish cADPR as a key player in ABA signal transduction pathways in plants.
Resumo:
The p53 tumor suppressor protein and the MDM2 oncoprotein form a feedback-control loop that up-regulates cellular MDM2 production, blocks p53 activity, and promotes p53 decay. tsg101 was discovered as a gene whose deficiency results in neoplastic transformation of NIH 3T3 cells and the ability to generate metastatic tumors in nude mice. Its protein product contains a domain, Ubc, characteristic of the catalytic domain of ubiquitin conjugase (E2) enzymes but lacking an active-site cysteine crucial for ubiquitin conjugase activity. Here we report that TSG101 participates with MDM2 in an autoregulatory loop that modulates the cellular levels of both proteins, and also of p53, by affecting protein decay. We show that the Ubc domain of TSG101 interferes with ubiquitination of MDM2, that TSG101 inhibits MDM2 decay and elevates its steady-state level, and that these events are associated with down-regulation of p53 protein. Conversely, pulse–chase and Western blot experiments in wild-type and mutant fibroblasts indicate that elevation of MDM2 by overexpression of wild-type p53, by amplification of the endogenous MDM2 gene, or by transfection of MDM2-expressing constructs promotes TSG101 loss, which we show occurs by 26S proteasome-dependent decay. Our results identify TSG101 as both a regulator of, and target of, MDM2/p53 circuitry.
Resumo:
The A loop is an essential RNA component of the ribosome peptidyltransferase center that directly interacts with aminoacyl (A)-site tRNA. The A loop is highly conserved and contains a ubiquitous 2′-O-methyl ribose modification at position U2552. Here, we present the solution structure of a modified and unmodified A-loop RNA to define both the A-loop fold and the structural impact of the U2552 modification. Solution data reveal that the A-loop RNA has a compact structure that includes a noncanonical base pair between C2556 and U2552. NMR evidence is presented that the N3 position of C2556 has a shifted pKa and that protonation at C2556-N3 changes the C-U pair geometry. Our data indicate that U2552 methylation modifies the A-loop fold, in particular the dynamics and position of residues C2556 and U2555. We compare our structural data with the structure of the A loop observed in a recent 50S crystal structure [Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. (2000) Science 289, 905–920; Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. (2000) Science 289, 920–930]. The solution and crystal structures of the A loop are dramatically different, suggesting that a structural rearrangement of the A loop must occur on docking into the peptidyltransferase center. Possible roles of this docking event, the shifted pKa of C2556 and the U2552 2′-O-methylation in the mechanism of translation, are discussed.
Resumo:
The II-III loop of the skeletal muscle dihydropyridine receptor (DHPR) α1S subunit is responsible for bidirectional-signaling interactions with the ryanodine receptor (RyR1): transmitting an orthograde, excitation–contraction (EC) coupling signal to RyR1 and receiving a retrograde, current-enhancing signal from RyR1. Previously, several reports argued for the importance of two distinct regions of the skeletal II-III loop (residues R681–L690 and residues L720–Q765, respectively), claiming for each a key function in DHPR–RyR1 communication. To address whether residues 720–765 of the II-III loop are sufficient to enable skeletal-type (Ca2+ entry-independent) EC coupling and retrograde interaction with RyR1, we constructed a green fluorescent protein (GFP)-tagged chimera (GFP-SkLM) having rabbit skeletal (Sk) DHPR sequence except for a II-III loop (L) from the DHPR of the house fly, Musca domestica (M). The Musca II-III loop (75% dissimilarity to α1S) has no similarity to α1S in the regions R681–L690 and L720–Q765. GFP-SkLM expressed in dysgenic myotubes (which lack endogenous α1S subunits) was unable to restore EC coupling and displayed strongly reduced Ca2+ current densities despite normal surface expression levels and correct triad targeting (colocalization with RyR1). Introducing rabbit α1S residues L720–L764 into the Musca II-III loop of GFP-SkLM (substitution for Musca DHPR residues E724–T755) completely restored bidirectional coupling, indicating its dependence on α1S loop residues 720–764 but its independence from other regions of the loop. Thus, 45 α1S-residues embedded in a very dissimilar background are sufficient to restore bidirectional coupling, indicating that these residues may be a site of a protein–protein interaction required for bidirectional coupling.
Resumo:
The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process.
Resumo:
The highly conserved small GTPase Cdc42p is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. Multiple effectors of Cdc42p have been identified, although it is unclear how their activities are coordinated to produce particular cell behaviors. One strategy used to address the contributions made by different effector pathways downstream of small GTPases has been the use of “effector-loop” mutants of the GTPase that selectively impair only a subset of effector pathways. We now report the generation and preliminary characterization of a set of effector-loop mutants of Saccharomyces cerevisiae CDC42. These mutants define genetically separable pathways influencing actin or septin organization. We have characterized the phenotypic defects of these mutants and the binding defects of the encoded proteins to known yeast Cdc42p effectors in vitro. The results suggest that these effectors cannot account for the observed phenotypes, and therefore that unknown effectors exist that affect both actin and septin organization. The availability of partial function alleles of CDC42 in a genetically tractable system serves as a useful starting point for genetic approaches to identify such novel effectors.
Resumo:
Two important features of amphibian metamorphosis are the sequential response of tissues to different concentrations of thyroid hormone (TH) and the development of the negative feedback loop between the pituitary and the thyroid gland that regulates TH synthesis by the thyroid gland. At the climax of metamorphosis in Xenopus laevis (when the TH level is highest), the ratio of the circulating precursor thyroxine (T4) to the active form 3,5,3′-triiodothyronine (T3) in the blood is many times higher than it is in tissues. This difference is because of the conversion of T4 to T3 in target cells of the tadpole catalyzed by the enzyme type II iodothyronine deiodinase (D2) and the local effect (cell autonomy) of this activity. Limb buds and tails express D2 early and late in metamorphosis, respectively, correlating with the time that these organs undergo TH-induced change. T3 is required to complete metamorphosis because the peak concentration of T4 that is reached at metamorphic climax cannot induce the final morphological changes. At the climax of metamorphosis, D2 expression is activated specifically in the anterior pituitary cells that express the genes for thyroid-stimulating hormone but not in the cells that express proopiomelanocortin. Physiological concentrations of T3 but not T4 can suppress thyrotropin subunit β gene expression. The timing and the remarkable specificity of D2 expression in the thyrotrophs of the anterior pituitary coupled with the requirement for locally synthesized T3 strongly support a role for D2 in the onset of the negative feedback loop at the climax of metamorphosis.