970 resultados para light response curve
Resumo:
Barley (Hordeum vulgare L.) is a long-day plant whose flowering is enhanced when the photoperiod is supplemented with far-red light, and this promotion is mediated by phytochrome. A chemically mutagenized dwarf cultivar of barley was selected for early flowering time (barley maturity daylength response [BMDR]-1) and was made isogenic with the cultivar Shabet (BMDR-8) by backcrossing. BMDR-1 was found to contain higher levels of both phytochrome A and phytochrome B in the dark on immunoblots with monoclonal antibodies from oat (Avena sativa L.) that are specific to different members of the phytochrome gene family. Phytochrome A was light labile in both BMDR-1 and BMDR-8, decreasing to very low levels after 4 d of growth in the light. Phytochrome B was light stable in BMDR-8, being equal in both light and darkness. However, phytochrome B became light labile in BMDR-1 and this destabilization of phytochrome B appeared to make BMDR-1 insensitive to photoperiod. In addition, both the mutant and the wild type lacked any significant promotion of flowering in response to a pulse of far-red light given at the end of day, and the end-of-day, far-red inhibition of tillering is normal in both, suggesting that phytochrome B is not involved with these responses in barley.
Resumo:
In natural habitats Marsilea quadrifolia L. produces different types of leaves above and below the water level. In aseptic cultures growth conditions can be manipulated so that leaves of the submerged type are produced continuously. Under such conditions the application of either blue light or an optimal concentration of abscisic acid (ABA) induced the development of aerial-type leaves. When fluridone, an inhibitor of ABA biosynthesis, was added to the culture medium it did not prevent blue light induction of aerial leaf development. During blue light treatment the endogenous ABA level in M. quadrifolia leaves remained unchanged. However, after the plants were transferred to an enriched medium, the ABA level gradually increased, corresponding to a transition in development from the submerged type of leaves to aerial leaves. These results indicate that the blue light signal is not mediated by ABA. Therefore, in the regulation of heterophyllous determination, discrete pathways exist in response to environmental signals.
Resumo:
The chloroplast gene psbD encodes D2, a chlorophyll-binding protein located in the photosystem II reaction center. Transcription of psbD in higher plants involves at least three promoters, one of which is regulated by blue light. The psbD blue-light-regulated promoter (BLRP) consists of a −10 promoter element and an activating complex, AGF, that binds immediately upstream of −35. A second sequence-specific DNA-binding complex, PGTF, binds upstream of AGF between −71 and −100 in the barley (Hordeum vulgare) psbD BLRP. In this study we report that ADP-dependent phosphorylation selectively inhibits the binding of PGTF to the barley psbD BLRP. ATP at high concentrations (1–5 mm) inhibits PGTF binding, but in the presence of phosphocreatine and phosphocreatine kinase, this capacity is lost, presumably due to scavenging of ADP. ADP inhibits PGTF binding at relatively low concentrations (0.1 mm), whereas other nucleotides are unable to mediate this response. ADP-mediated inhibition of PGTF binding is reduced in the presence of the protein kinase inhibitor K252a. This and other results suggest that ADP-dependent phosphorylation of PGTF (or some associated protein) inhibits binding of PGTF to the psbD BLRP and reduces transcription. ADP-dependent phosphorylation is expected to increase in darkness in parallel with the rise in ADP levels in chloroplasts. ADP-dependent phosphorylation in chloroplasts may, therefore, in coordination, inactivate enzymes involved in carbon assimilation, protein synthesis, and transcription during diurnal light/dark cycles.
Resumo:
UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.
Resumo:
To optimize photosynthesis, cyanobacteria move toward or away from a light source by a process known as phototaxis. Phototactic movement of the cyanobacterium Synechocystis PCC6803 is a surface-dependent phenomenon that requires type IV pili, cellular appendages implicated in twitching and social motility in a range of bacteria. To elucidate regulation of cyanobacterial motility, we generated transposon-tagged mutants with aberrant phototaxis; mutants were either nonmotile or exhibited an “inverted motility response” (negative phototaxis) relative to wild-type cells. Several mutants contained transposons in genes similar to those involved in bacterial chemotaxis. Synechocystis PCC6803 has three loci with chemotaxis-like genes, of which two, Tax1 and Tax3, are involved in phototaxis. Transposons interrupting the Tax1 locus yielded mutants that exhibited an inverted motility response, suggesting that this locus is involved in controlling positive phototaxis. However, a strain null for taxAY1 was nonmotile and hyperpiliated. Interestingly, whereas the C-terminal region of the TaxD1 polypeptide is similar to the signaling domain of enteric methyl-accepting chemoreceptor proteins, the N terminus has two domains resembling chromophore-binding domains of phytochrome, a photoreceptor in plants. Hence, TaxD1 may play a role in perceiving the light stimulus. Mutants in the Tax3 locus are nonmotile and do not make type IV pili. These findings establish links between chemotaxis-like regulatory elements and type IV pilus-mediated phototaxis.
Resumo:
Previously, we identified a novel gene, pmgA, as an essential factor to support photomixotrophic growth of Synechocystis species PCC 6803 and reported that a strain in which pmgA was deleted grew better than the wild type under photoautotrophic conditions. To gain insight into the role of pmgA, we investigated the mutant phenotype of pmgA in detail. When low-light-grown (20 μE m−2 s−1) cells were transferred to high light (HL [200μE m−2 s−1]), pmgA mutants failed to respond in the manner typically associated with Synechocystis. Specifically, mutants lost their ability to suppress accumulation of chlorophyll and photosystem I and, consequently, could not modulate photosystem stoichiometry. These phenotypes seem to result in enhanced rates of photosynthesis and growth during short-term exposure to HL. Moreover, mixed-culture experiments clearly demonstrated that loss of pmgA function was selected against during longer-term exposure to HL, suggesting that pmgA is involved in acquisition of resistance to HL stress. Finally, early induction of pmgA expression detected by reverse transcriptase-PCR upon the shift to HL led us to conclude that pmgA is the first gene identified, to our knowledge, as a specific regulatory factor for HL acclimation.
Resumo:
Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl− and K+. The postshrinking volume recovery is achieved by K+ and Cl− influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.
Resumo:
Many auxin responses are dependent on redistribution and/or polar transport of indoleacetic acid. Polar transport of auxin can be inhibited through the application of phytotropins such as 1-naphthylphthalamic acid (NPA). When Arabidopsis thaliana seedlings were grown in the light on medium containing 1.0 μm NPA, hypocotyl and root elongation and gravitropism were strongly inhibited. When grown in darkness, however, NPA disrupted the gravity response but did not affect elongation. The extent of inhibition of hypocotyl elongation by NPA increased in a fluence-rate-dependent manner to a maximum of about 75% inhibition at 50 μmol m−2 s−1 of white light. Plants grown under continuous blue or far-red light showed NPA-induced hypocotyl inhibition similar to that of white-light-grown plants. Plants grown under continuous red light showed less NPA-induced inhibition. Analysis of photoreceptor mutants indicates the involvement of phytochrome and cryptochrome in mediating this NPA response. Hypocotyls of some auxin-resistant mutants had decreased sensitivity to NPA in the light, but etiolated seedlings of these mutants were similar in length to the wild type. These results indicate that light has a significant effect on NPA-induced inhibition in Arabidopsis, and suggest that auxin has a more important role in elongation responses in light-grown than in dark-grown seedlings.
Resumo:
Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced the red light-stimulated fluorescence quenching by up to 50%. In contrast, added blue light did not alter the red light-stimulated quenching from abaxial (lower) guard cells. This response pattern paralleled the blue light sensitivity of stomatal opening in the two leaf surfaces. An action spectrum for the blue light-induced enhancement of the red light-stimulated quenching showed a major peak at 450 nm and two minor peaks at 420 and 470 nm. This spectrum matched closely an action spectrum for blue light-stimulated stomatal opening. Coleoptile chloroplasts also showed an enhancement by blue light of red light-stimulated quenching. The action spectrum of this response, showing a major peak at 450 nm, a minor peak at 470 nm, and a shoulder at 430 nm, closely matched an action spectrum for blue light-stimulated coleoptile phototropism. Both action spectra match the absorption spectrum of zeaxanthin, a chloroplastic carotenoid recently implicated in blue light photoreception of both guard cells and coleoptiles. The remarkable similarity between the action spectra for the blue light responses of guard cells and coleoptile chloroplasts and the spectra for blue light-stimulated stomatal opening and phototropism, coupled to the recently reported evidence on a role of zeaxanthin in blue light photoreception, indicates that the guard cell and coleoptile chloroplasts specialize in sensory transduction.
Resumo:
The eukaryotic green alga Dunaliella tertiolecta acclimates to decreased growth irradiance by increasing cellular levels of light-harvesting chlorophyll protein complex apoproteins associated with photosystem II (LHCIIs), whereas increased growth irradiance elicits the opposite response. Nuclear run-on transcription assays and measurements of cab mRNA stability established that light intensity-dependent changes in LHCII are controlled at the level of transcription. cab gene transcription in high-intensity light was partially enhanced by reducing plastoquinone with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), whereas it was repressed in low-intensity light by partially inhibiting the oxidation of plastoquinol with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Uncouplers of photosynthetic electron transport and inhibition of water splitting had no effect on LHCII levels. These results strongly implicate the redox state of the plastoquinone pool in the chloroplast as a photon-sensing system that is coupled to the light-intensity regulation of nuclear-encoded cab gene transcription. The accumulation of cellular chlorophyll at low-intensity light can be blocked with cytoplasmically directed phosphatase inhibitors, such as okadaic acid, microcystin L-R, and tautomycin. Gel mobility-shift assays revealed that cells grown in high-intensity light contained proteins that bind to the promoter region of a cab gene carrying sequences homologous to higher plant light-responsive elements. On the basis of these experimental results, we propose a model for a light intensity signaling system where cab gene expression is reversibly repressed by a phosphorylated factor coupled to the redox status of plastoquinone through a chloroplast protein kinase.
Resumo:
The hemH gene of Escherichia coli encodes ferrochelatase (EC 4.99.1.1), the enzyme that catalyzes the last step in the production of heme, namely the synthesis of heme from protoporphyrin IX plus Fe2+. The behavioral responses to light were studied in E. coli carrying a hemH mutation. It was shown that the hemH mutant displayed a tumbling response upon illumination and a running response upon removal of the light. The most effect light to induce a tumbling response in the hemH mutant was blue light (396-450 nm). The chemotaxis machinery was needed for the light-induced tumbling response in the hemH mutant. The bacterial defect is an analog of the human inherited disease erythropoietic protoporphyria.
Resumo:
We have developed a system for the isolation of Neurospora crassa mutants that shows altered responses to blue light. To this end we have used the light-regulated promoter of the albino-3 gene fused to the neutral amino acid permease gene mtr. The product of the mtr gene is required for the uptake of neutral aliphatic and aromatic amino acids, as well as toxic analogs such as p-flurophenylalanine or 4-methyltryptophan. mtr trp-2-carrying cells were transformed with the al-3 promoter-mtr wild-type gene (al-3p-mtr+) to obtain a strain with a light-regulated tryptophan uptake. This strain is sensitive to p-fluorophenylalanine when grown under illumination and resistant when grown in the dark. UV mutagenesis of the al-3p-mtr(+)-carrying strain allowed us to isolate two mutant strains, BLR-1 and BLR-2 (blue light regulator), that are light-resistant to p-fluorophenylalanine and have lost the ability to grow on tryptophan. These two strains have a pale-orange phenotype and show down-regulation of all the photoregulated genes tested (al-3, al-1, con-8, and con-10). Mutations in the BLR strains are not allelic with white collar 1 or white collar 2, regulatory genes that are also involved in the response to blue light.
Resumo:
A cetamina é uma droga amplamente utilizada e o seu uso inadequado tem sido associado à graves consequências para a saúde humana. Embora as propriedades farmacológicas deste agente em doses terapêuticas sejam bem conhecidas, existem poucos estudos sobre os efeitos secundários induzidos por doses não-terapêuticas, incluindo os efeitos nos estados de ansiedade e agressividade. Neste contexto, os modelos animais são uma etapa importante na investigação e elucidação do mecanismo de ação a nível comportamental. O zebrafish (Danio rerio) é um novo organismo-modelo, interessante e promissor, uma vez que apresenta alta similaridade fisiológica, genética e neuroquímica com seres humanos, respostas comportamentais bem definidas e rápida absorção de compostos de interesse em meio aquoso além de apresentar uma série de vantagens em relação aos modelos mamíferos tais como manutenção de baixo custo, prática e executável em espaços reduzidos. Nesse sentido, faz-se necessário a execução de ensaios comportamentais em conjunto com análises estatísticas robustas e rápidas tais como ANOVA e Métodos Multivariados; e também o desenvolvimento de métodos analíticos sensíveis, precisos e rápidos para determinação de compostos de interesse em matrizes biológicas provenientes do animal. Os objetivos do presente trabalho foram a investigação dos efeitos da cetamina sobre a ansiedade e a agressividade em zebrafish adulto empregando Testes de Claro-Escuro e Testes do Espelho e métodos estatísticos univariados (ANOVA) e multivariados (PCA, HCA e SIMCA) assim como o desenvolvimento de método analítico para determinação da cetamina em matriz biológica proveniente do animal, empregando Extração Líquido-Líquido e Cromatografia em Fase Gasosa acoplada ao Detector de Nitrogênio-Fósforo (GC-NPD). Os resultados comportamentais indicaram que a cetamina produziu um efeito significativo dose-dependente em zebrafish adulto na latência à área clara, no número de cruzamentos entre as áreas e no tempo de exploração da área clara. Os resultados das análises SIMCA e PCA mostraram uma maior similaridade entre o grupo controle e os grupos de tratamento expostos às doses mais baixas (5 e 20 mg L-1) e entre os grupos expostos às doses de 40 e 60 mg L-1. Na análise por PCA, dois componentes principais responderam por 88,74% de toda a informação do sistema, sendo que 62,59% da informação cumulativa do sistema foi descrito pela primeira componente principal. As classificações HCA e SIMCA seguiram uma evolução lógica na distribuição das amostras por classes. As doses mais altas de cetamina induziram uma distribuição mais homogênea das amostras enquanto as doses mais baixas e o controle resultaram em distribuições mais dispersas. No Teste do Espelho, a cetamina não induziu efeitos significativos no comportamento dos animais. Estes resultados sugerem que a cetamina é modulador de comportamentos ansiosos, sem efeitos indutores de agressividade. Os resultados da validação do método cromatográfico indicaram uma extração com valores de recuperação entre 33,65% e 70,89%. A curva de calibração foi linear com valor de R2 superior a 0,99. O limite de detecção (LOD) foi de 1 ng e o limite de quantificação (LOQ) foi de 5 ng. A exatidão do método cromatográfico manteve-se entre - 24,83% e - 1,258%, a precisão intra-ensaio entre 2,67 e 14,5% e a precisão inter-ensaio entre 1,93 e 13,9%.
Resumo:
Póster presentado en el VII European/ I World Meeting in Visual and Physiological Optics
Resumo:
Background: The pupillary light reflex characterizes the direct and consensual response of the eye to the perceived brightness of a stimulus. It has been used as indicator of both neurological and optic nerve pathologies. As with other eye reflexes, this reflex constitutes an almost instantaneous movement and is linked to activation of the same midbrain area. The latency of the pupillary light reflex is around 200 ms, although the literature also indicates that the fastest eye reflexes last 20 ms. Therefore, a system with sufficiently high spatial and temporal resolutions is required for accurate assessment. In this study, we analyzed the pupillary light reflex to determine whether any small discrepancy exists between the direct and consensual responses, and to ascertain whether any other eye reflex occurs before the pupillary light reflex. Methods: We constructed a binocular video-oculography system two high-speed cameras that simultaneously focused on both eyes. This was then employed to assess the direct and consensual responses of each eye using our own algorithm based on Circular Hough Transform to detect and track the pupil. Time parameters describing the pupillary light reflex were obtained from the radius time-variation. Eight healthy subjects (4 women, 4 men, aged 24–45) participated in this experiment. Results: Our system, which has a resolution of 15 microns and 4 ms, obtained time parameters describing the pupillary light reflex that were similar to those reported in previous studies, with no significant differences between direct and consensual reflexes. Moreover, it revealed an incomplete reflex blink and an upward eye movement at around 100 ms that may correspond to Bell’s phenomenon. Conclusions: Direct and consensual pupillary responses do not any significant temporal differences. The system and method described here could prove useful for further assessment of pupillary and blink reflexes. The resolution obtained revealed the existence reported here of an early incomplete blink and an upward eye movement.