555 resultados para leverage
Resumo:
Conventional web search engines are centralised in that a single entity crawls and indexes the documents selected for future retrieval, and the relevance models used to determine which documents are relevant to a given user query. As a result, these search engines suffer from several technical drawbacks such as handling scale, timeliness and reliability, in addition to ethical concerns such as commercial manipulation and information censorship. Alleviating the need to rely entirely on a single entity, Peer-to-Peer (P2P) Information Retrieval (IR) has been proposed as a solution, as it distributes the functional components of a web search engine – from crawling and indexing documents, to query processing – across the network of users (or, peers) who use the search engine. This strategy for constructing an IR system poses several efficiency and effectiveness challenges which have been identified in past work. Accordingly, this thesis makes several contributions towards advancing the state of the art in P2P-IR effectiveness by improving the query processing and relevance scoring aspects of a P2P web search. Federated search systems are a form of distributed information retrieval model that route the user’s information need, formulated as a query, to distributed resources and merge the retrieved result lists into a final list. P2P-IR networks are one form of federated search in routing queries and merging result among participating peers. The query is propagated through disseminated nodes to hit the peers that are most likely to contain relevant documents, then the retrieved result lists are merged at different points along the path from the relevant peers to the query initializer (or namely, customer). However, query routing in P2P-IR networks is considered as one of the major challenges and critical part in P2P-IR networks; as the relevant peers might be lost in low-quality peer selection while executing the query routing, and inevitably lead to less effective retrieval results. This motivates this thesis to study and propose query routing techniques to improve retrieval quality in such networks. Cluster-based semi-structured P2P-IR networks exploit the cluster hypothesis to organise the peers into similar semantic clusters where each such semantic cluster is managed by super-peers. In this thesis, I construct three semi-structured P2P-IR models and examine their retrieval effectiveness. I also leverage the cluster centroids at the super-peer level as content representations gathered from cooperative peers to propose a query routing approach called Inverted PeerCluster Index (IPI) that simulates the conventional inverted index of the centralised corpus to organise the statistics of peers’ terms. The results show a competitive retrieval quality in comparison to baseline approaches. Furthermore, I study the applicability of using the conventional Information Retrieval models as peer selection approaches where each peer can be considered as a big document of documents. The experimental evaluation shows comparative and significant results and explains that document retrieval methods are very effective for peer selection that brings back the analogy between documents and peers. Additionally, Learning to Rank (LtR) algorithms are exploited to build a learned classifier for peer ranking at the super-peer level. The experiments show significant results with state-of-the-art resource selection methods and competitive results to corresponding classification-based approaches. Finally, I propose reputation-based query routing approaches that exploit the idea of providing feedback on a specific item in the social community networks and manage it for future decision-making. The system monitors users’ behaviours when they click or download documents from the final ranked list as implicit feedback and mines the given information to build a reputation-based data structure. The data structure is used to score peers and then rank them for query routing. I conduct a set of experiments to cover various scenarios including noisy feedback information (i.e, providing positive feedback on non-relevant documents) to examine the robustness of reputation-based approaches. The empirical evaluation shows significant results in almost all measurement metrics with approximate improvement more than 56% compared to baseline approaches. Thus, based on the results, if one were to choose one technique, reputation-based approaches are clearly the natural choices which also can be deployed on any P2P network.
Resumo:
El objetivo de este trabajo es utilizar algunos hechos estilizados de la "Gran recesión", específicamente la drástica caída en el nivel de capitalización bancario, para analizar la relación entre los ciclos financieros y los ciclos reales, así como la efectividad de la política monetaria no convencional y las políticas macroprudenciales. Para esto, en el primer capítulo se desarrolla una microfundamentación de la banca a partir de un modelo de Costly State Verification, que es incluido posteriomente en distintas especificaciones de modelos DSGE. Los resultados muestran que: (i) los ciclos financieros y los ciclos económicos pueden relacionarse a partir del deterioro del capital bancario; (ii) Las políticas macroprudenciales y no convencionales son efectivas para moderar los ciclos económicos, pero son costosas en términos de recursos e inflación.
Resumo:
Research networks provide a framework for review, synthesis and systematic testing of theories by multiple scientists across international borders critical for addressing global-scale issues. In 2012, a GHG research network referred to as MAGGnet (Managing Agricultural Greenhouse Gases Network) was established within the Croplands Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (GRA). With involvement from 46 alliance member countries, MAGGnet seeks to provide a platform for the inventory and analysis of agricultural GHG mitigation research throughout the world. To date, metadata from 315 experimental studies in 20 countries have been compiled using a standardized spreadsheet. Most studies were completed (74%) and conducted within a 1-3-year duration (68%). Soil carbon and nitrous oxide emissions were measured in over 80% of the studies. Among plant variables, grain yield was assessed across studies most frequently (56%), followed by stover (35%) and root (9%) biomass. MAGGnet has contributed to modeling efforts and has spurred other research groups in the GRA to collect experimental site metadata using an adapted spreadsheet. With continued growth and investment, MAGGnet will leverage limited-resource investments by any one country to produce an inclusive, globally shared meta-database focused on the science of GHG mitigation.
Resumo:
The first paper sheds light on the informational content of high frequency data and daily data. I assess the economic value of the two family models comparing their performance in forecasting asset volatility through the Value at Risk metric. In running the comparison this paper introduces two key assumptions: jumps in prices and leverage effect in volatility dynamics. Findings suggest that high frequency data models do not exhibit a superior performance over daily data models. In the second paper, building on Majewski et al. (2015), I propose an affine-discrete time model, labeled VARG-J, which is characterized by a multifactor volatility specification. In the VARG-J model volatility experiences periods of extreme movements through a jump factor modeled as an Autoregressive Gamma Zero process. The estimation under historical measure is done by quasi-maximum likelihood and the Extended Kalman Filter. This strategy allows to filter out both volatility factors introducing a measurement equation that relates the Realized Volatility to latent volatility. The risk premia parameters are calibrated using call options written on S&P500 Index. The results clearly illustrate the important contribution of the jump factor in the pricing performance of options and the economic significance of the volatility jump risk premia. In the third paper, I analyze whether there is empirical evidence of contagion at the bank level, measuring the direction and the size of contagion transmission between European markets. In order to understand and quantify the contagion transmission on banking market, I estimate the econometric model by Aït-Sahalia et al. (2015) in which contagion is defined as the within and between countries transmission of shocks and asset returns are directly modeled as a Hawkes jump diffusion process. The empirical analysis indicates that there is a clear evidence of contagion from Greece to European countries as well as self-contagion in all countries.
Resumo:
The papers included in this thesis deal with a few aspects of insurance economics that have seldom been dealt with in the applied literature. In the first paper I apply for the first time the tools of the economics of crime to study the determinants of frauds, using data on Italian provinces. The contributions to the literature are manifold: -The price of insuring has a positive correlation with the propensity to defraud -Social norms constraint fraudulent behavior, but their strength is curtailed in economic downturns -I apply a simple extension of the Random Coefficient model, which allows for the presence of time invariant covariates and asymmetries in the impact of the regressors. The second paper assesses how the evolution of macro prudential regulation of insurance companies has been reflected in their equity price. I employ a standard event study methodology, deriving the definition of the “control” and “treatment” groups from what is implied by the regulatory framework. The main results are: -Markets care about the evolution of the legislation. Their perception has shifted from a first positive assessment of a possible implicit “too big to fail” subsidy to a more negative one related to its cost in terms of stricter capital requirement -The size of this phenomenon is positively related to leverage, size and on the geographical location of the insurance companies The third paper introduces a novel methodology to forecast non-life insurance premiums and profitability as function of macroeconomic variables, using the simultaneous equation framework traditionally employed macroeconometric models and a simple theoretical model of insurance pricing to derive a long term relationship between premiums, claims expenses and short term rates. The model is shown to provide a better forecast of premiums and profitability compared with the single equation specifications commonly used in applied analysis.
Resumo:
Using Big Data and Natural Language Processing (NLP) tools, this dissertation investigates the narrative strategies that atypical actors can leverage to deal with the adverse reactions they often elicit. Extensive research shows that atypical actors, those who fail to abide by established contextual standards and norms, are subject to skepticism and face a higher risk of rejection. Indeed, atypical actors combine features and behaviors in unconventional ways, thereby generating confusion in the audience and instilling doubts about their propositions' legitimacy. However, the same atypicality is often cited as the precursor to socio-cultural innovation and a strategic act to expand the capacity for delivering valued goods and services. Contextualizing the conditions under which atypicality is celebrated or punished has been a significant theoretical challenge for scholars interested in reconciling this tension. Nevertheless, prior work has focused on audience side factors or on actor-side characteristics that are only scantily under an actor's control (e.g., status and reputation). This dissertation demonstrates that atypical actors can use strategically crafted narratives to mitigate against the audience’s negative response. In particular, when atypical actors evoke conventional features in their story, they are more likely to overcome the illegitimacy discount usually applied to them. Moreover, narratives become successful navigational devices for atypicality when atypical actors use a more abstract language. This simplifies classification and provides the audience with more flexibility to interpret and understand them.
Resumo:
In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.
Resumo:
The continuous and swift progression of both wireless and wired communication technologies in today's world owes its success to the foundational systems established earlier. These systems serve as the building blocks that enable the enhancement of services to cater to evolving requirements. Studying the vulnerabilities of previously designed systems and their current usage leads to the development of new communication technologies replacing the old ones such as GSM-R in the railway field. The current industrial research has a specific focus on finding an appropriate telecommunication solution for railway communications that will replace the GSM-R standard which will be switched off in the next years. Various standardization organizations are currently exploring and designing a radiofrequency technology based standard solution to serve railway communications in the form of FRMCS (Future Railway Mobile Communication System) to substitute the current GSM-R. Bearing on this topic, the primary strategic objective of the research is to assess the feasibility to leverage on the current public network technologies such as LTE to cater to mission and safety critical communication for low density lines. The research aims to identify the constraints, define a service level agreement with telecom operators, and establish the necessary implementations to make the system as reliable as possible over an open and public network, while considering safety and cybersecurity aspects. The LTE infrastructure would be utilized to transmit the vital data for the communication of a railway system and to gather and transmit all the field measurements to the control room for maintenance purposes. Given the significance of maintenance activities in the railway sector, the ongoing research includes the implementation of a machine learning algorithm to detect railway equipment faults, reducing time and human analysis errors due to the large volume of measurements from the field.
Resumo:
In this PhD thesis a new firm level conditional risk measure is developed. It is named Joint Value at Risk (JVaR) and is defined as a quantile of a conditional distribution of interest, where the conditioning event is a latent upper tail event. It addresses the problem of how risk changes under extreme volatility scenarios. The properties of JVaR are studied based on a stochastic volatility representation of the underlying process. We prove that JVaR is leverage consistent, i.e. it is an increasing function of the dependence parameter in the stochastic representation. A feasible class of nonparametric M-estimators is introduced by exploiting the elicitability of quantiles and the stochastic ordering theory. Consistency and asymptotic normality of the two stage M-estimator are derived, and a simulation study is reported to illustrate its finite-sample properties. Parametric estimation methods are also discussed. The relation with the VaR is exploited to introduce a volatility contribution measure, and a tail risk measure is also proposed. The analysis of the dynamic JVaR is presented based on asymmetric stochastic volatility models. Empirical results with S&P500 data show that accounting for extreme volatility levels is relevant to better characterize the evolution of risk. The work is complemented by a review of the literature, where we provide an overview on quantile risk measures, elicitable functionals and several stochastic orderings.
Resumo:
The first chapter provides evidence that aggregate Research and Development (R&D) investment drives a persistent component in productivity growth and that this embodies a risk priced in financial markets. In a semi-endogenous growth model, this component is identified by the R&D in excess of equilibrium levels and can be approximated by the Error Correction Term in the cointegration between R&D and Total Factor Productivity. Empirically, the component results being well defined and it satisfies all key theoretical predictions: it exhibits appropriate persistency, it forecasts productivity growth, and it is associated with a cross-sectional risk premium. CAPM is the most foundational model in financial economics, but is known to empirically underestimate expected returns of low-risk assets and overestimate those with high risk. The second chapter studies how risks omission and funding tightness jointly contribute to explaining this anomaly, with the former affecting the definition of assets’ riskiness and the latter affecting how risk is remunerated. Theoretically, the two effects are shown to counteract each other. Empirically, the spread related to binding leverage constraints is found to be significant at 2% yearly. Nonetheless, average returns of portfolios that exploit this anomaly are found to mostly reflect omitted risks, in contrast to their employment in previous literature. The third chapter studies how ‘sustainability’ of assets affect discount rates, which is intrinsically mediated by the risk profile of the assets themselves. This has implications for the assessment of the sustainability-related spread and for hedging changes in the sustainability concern. This mechanism is tested on the ESG-score dimension for US data, with inconclusive evidence regarding the existence of an ESG-related premium in the first place. Also, the risk profile of the long-short ESG portfolio is not likely to impact the sign of its average returns with respect to the sustainability-spread, for the time being.
Resumo:
In a context of technological innovation, the aim of this thesis is to develop a technology that has gained interest in both scientific and industrial realms. This technology serves as a viable alternative to outdated and energy-consuming industrial systems. Electro-adhesive devices (EADs) leverage electrostatic forces for grasping objects or adhering to surfaces. The advantage of employing electrostatics lies in its adaptability to various materials without compromising the structure or chemistry of the object or surface. These benefits have led the industry to explore this technology as a replacement for costly vacuum systems and suction cups currently used for handling most products. Furthermore, the broad applicability of this technology extends to extreme environments, such as space with ultra-high vacuum conditions. Unfortunately, research in this area has yet to yield practical results for industrially effective gripper prototyping. This is primarily due to the inherent complexity of electro-adhesive technology, which operates on basic capacitive principles that does not find satisfying physical descriptions. This thesis aims to address these challenges through a series of studies, starting with the manufacturing process and testing of an EAD that has become the standard in our laboratory. It then delves into material and electrode geometry studies to enhance system performance, ultimately presenting potential industrial applications of the technology. All the presented results are encouraging, as they have yielded shear force values three times higher than those previously reported in the literature. The various applications have demonstrated the significant effectiveness of EADs as brakes or, more broadly, in exerting shear forces. This opens up the possibility of utilizing cutting-edge technologies to push the boundaries of technology to the fullest.
Resumo:
At the center of galaxy clusters, a dramatic interplay known as feedback cycle occurs between the hot intracluster medium (ICM) and the active galactic nucleus (AGN) of the central galaxy. The footprints of this interplay are evident from X-ray observations of the ICM, where X-ray cavities and shock fronts are associated with radio lobe emission tracing energetic AGN outbursts. While such jet activity reduces the efficiency of the hot gas to cool to lower temperatures, residual cooling can generate warm and cold gas clouds around the central galaxy. The condensed gas parcels can ultimately reach the core of the galaxy and be accreted by the AGN. This picture is the result of tremendous advances over the last three decades. Yet, a deeper understanding of the details of how the heating–cooling regulation is achieved and maintained is still missing. In this Thesis, we delve into key aspects of the feedback cycle. To this end, we leverage high-resolution (sub-arcsecond), multifrequency observations (mainly X-ray and radio) of several top-level facilities (e.g., Chandra, JVLA, VLBA, LOFAR). First, we investigate which conditions trigger a feedback response to gas cooling, by studying the properties of clusters where feedback is just about to start. Then, we focus on the details of how the AGN–ICM interaction progresses by examining cavity and shock heating in the cluster RBS797, an exemplary case of the jet feedback paradigm. Furthermore, we explore the importance of shock heating and the coupling of distinct jet power regimes (i.e., FRII, FRI and FR0 radio galaxies) to the environment. Ultimately, as heating models rely on the connection between the direct evidence (the jets) and the smoking gun (the X-ray cavities) of feedback, we examine the cases in which these two are dramatically misaligned.
Resumo:
In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.
Resumo:
State-of-the-art NLP systems are generally based on the assumption that the underlying models are provided with vast datasets to train on. However, especially when working in multi-lingual contexts, datasets are often scarce, thus more research should be carried out in this field. This thesis investigates the benefits of introducing an additional training step when fine-tuning NLP models, named Intermediate Training, which could be exploited to augment the data used for the training phase. The Intermediate Training step is applied by training models on NLP tasks that are not strictly related to the target task, aiming to verify if the models are able to leverage the learned knowledge of such tasks. Furthermore, in order to better analyze the synergies between different categories of NLP tasks, experimentations have been extended also to Multi-Task Training, in which the model is trained on multiple tasks at the same time.
Resumo:
In questa tesi tratteremo una variante della fattorizzazione CUR di una matrice data, ottenuta attraverso l'algoritmo DEIM ("discrete empirical interpolation method") a confronto con un metodo ampiamente usato in letteratura, il metodo dei Leverage Score. A tal fine verrà anche trattato un metodo per ottenere la fattorizzazione QR di una matrice in maniera incrementale. Verrà illustrato il comportamento degli algoritmi sviluppati su due esempi applicativi.