973 resultados para latex pressure potential
Resumo:
P>Progress in understanding the pathophysiology of abdominal aortic aneurysms (AAA) is dependent in part on the development and application of effective animal models that recapitulate key aspects of the disease. The objective was to produce an experimental model of AAA in rats by combining two potential causes of metalloproteinase (MMP) secretion: inflammation and turbulent blood flow. Male Wistar rats were randomly divided in four groups: Injury, Stenosis, Aneurysm and Control (40/group). The Injury group received a traumatic injury to the external aortic wall. The Stenosis group received an extrinsic stenosis at a corresponding location. The Aneurysm group received both the injury and stenosis simultaneously, and the Control group received a sham operation. Animals were euthanized at days 1, 3, 7 and 15. Aorta and/or aneurysms were collected and the fragments were fixed for morphologic, immunohistochemistry and morphometric analyses or frozen for MMP assays. AAAs had developed by day 3 in 60-70% of the animals, reaching an aortic dilatation ratio of more than 300%, exhibiting intense wall remodelling initiated at the adventitia and characterized by an obvious inflammatory infiltrate, mesenchymal proliferation, neoangiogenesis, elastin degradation and collagen deposition. Immunohistochemistry and zymography studies displayed significantly increased expressions of MMP-2 and MMP-9 in aneurysm walls compared to other groups. The haemo-dynamic alterations caused by the stenosis may have provided additional contribution to the MMPs liberation. This new model illustrated that AAA can be multifactorial and confirmed the key roles of MMP-2 and MMP-9 in this dynamic remodelling process.
Resumo:
Neutrophil migration is responsible for tissue damage observed in inflammatory diseases and is also implicated in inflammatory nociception. The use of lectins has been demonstrated to be effective in different activities including anti-inflammatory, antimicrobial, and in cancer therapy. In this study, we addressed the potential use of a lectin from Canavalia grandiflora seeds (ConGF) to control neutrophil migration and inflammatory hypernociception. Pretreatment of the animals intravenously (15 min before) with ConGF inhibited neutrophil migration to the peritoneal cavity in a dose-dependent fashion confirmed by an inhibition of rolling and adhesion of leukocytes by intravital microscopy. Another set of experiments showed that pretreatment of the animals with ConGF inhibited the mechanical hypernociception in mice induced by the i.pl. injection of carrageenan or formalin. This anti-nociceptive effect correlated with an effective blockade of neutrophil influx, as assessed by the hind paw tissue myeloperoxidase levels. Furthermore, ConGF had important inhibitory effects on the mouse carrageenan-induced paw edema. In addition, animals treated with ConGF showed inhibition of cytokines release. In conclusion, we demonstrated that the lectin ConGF inhibits neutrophil migration and mechanical inflammatory hypernociception.
Resumo:
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is an intracellular enzyme that has been proposed to metabolize peptides within cells, thereby affecting antigen presentation and G protein-coupled receptor signal transduction. However, only a small number of intracellular substrates of EP24.15 have been reported previously. Here we have identified over 100 peptides in human embryonic kidney 293 (HEK293) cells that are derived from intracellular proteins; many but not all of these peptides are substrates or products of EP24.15. First, cellular peptides were extracted from HEK293 cells and incubated in vitro with purified EP24.15. Then the peptides were labeled with isotopic tags and analyzed by mass spectrometry to obtain quantitative data on the extent of cleavage. A related series of experiments tested the effect of overexpression of EP24.15 on the cellular levels of peptides in HEK293 cells. Finally, synthetic peptides that corresponded to 10 of the cellular peptides were incubated with purified EP24.15 in vitro, and the cleavage was monitored by high pressure liquid chromatography and mass spectrometry. Many of the EP24.15 substrates identified by these approaches are 9-11 amino acids in length, supporting the proposal that EP24.15 can function in the degradation of peptides that could be used for antigen presentation. However, EP24.15 also converts some peptides into products that are 8-10 amino acids, thus contributing to the formation of peptides for antigen presentation. In addition, the intracellular peptides described here are potential candidates to regulate protein interactions within cells.
Resumo:
Endothelin may contribute to the development of inflammatory events such as leukocyte recruitment and nociception. Herein, we investigated whether endothelin-mediated mechanical hypernociception (decreased nociceptive threshold, evaluated by electronic pressure-meter) and neutrophil migration (myeloperoxidase activity) are inter-dependent in antigen challenge-induced Th1-driven hind-paw inflammation. In antigen challenge-induced inflammation, endothelin (ET) ET(A) and ET(B) receptor antagonism inhibited both hypernociception and neutrophil migration. Interestingly, ET-1 peptide-induced hypernociception was not altered by inhibiting neutrophil migration or endothelin ET(B) receptor antagonism, but rather by endothelin ET(A) receptor antagonism. Furthermore, endothelin ET(A), but not ET(B), receptor antagonism inhibited antigen-induced PGE(2) production, whereas either selective or combined blockade of endothelin ET(A) and/or ET(B) receptors reduced hypernociception and neutrophil recruitment caused by antigen challenge. Concluding, this study advances knowledge into the role for endothelin in inflammatory mechanisms and further supports the potential of endothelin receptor antagonists in controlling inflammation.
Resumo:
The endocannabinoid anandamide is a possible agonist at the Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel, in addition to its agonist activity at cannabinoid type 1 (CB1) receptor. In the midbrain dorsolateral periaqueductal gray (dlPAC) our previous data showed that CB1 activation induces anxiolytic-like effects. However, the rote of TRPV1 has remained unclear. Thus, in the present study we tested the hypothesis that this channel would contribute to the modulation of anxiety-like behaviour in the dlPAG. Mate Wistar rats received local injections of the TRPV1 antagonist capsazepine (10-60 nmol) and were submitted to the elevated plus-maze (EPM) and to the Vogel test. In addition, animals received local injections of capsaicin (0.01-1nmol), a TRPV1 agonist, and were tested in the same models. In accordance with our hypothesis, capsazepine produced anxiolytic-like effects both in the EPM and in the Vogel test. Capsaicin mimicked these results, which might be attributed to its ability to quickly desensitize the channel. Altogether, our data suggest that, while CB1 receptors seem to inhibit aversive responses in the dlPAG, TRPV1 could facilitate them. Thus, CB1 and TRPV1 may have opposite functions in modulating anxiety-like behaviour in this region. (C) 2008 Elsevier B.V. and ECNP. All rights reserved.
Resumo:
Phylloquinone (vitamin K-1, VK1) is widely used therapeutically and intravenous administration of this quinone can induce hypotension. We aimed to investigate the mechanisms underlying the effects induced by VK1 on arterial blood pressure. With this purpose a catheter was inserted into the abdominal aorta of male Wistar rats for blood pressure and heart rate recording. Bolus intravenous injection of VK1 (0.5-20 mg kg(-1)) produced a transient increase in blood pressure followed by a fall. Both the pressor and depressor response induced by VK1 were dose-dependent. On the other hand, intravenous injection of VK1 did not alter heart rate. The nitric oxide synthase (NOS) inhibitor N-G-nitro-L-arginine methyl ester (L-NAME, 10 and 20 mg kg(-1)) reduced both the increase and decrease in blood pressure induced by VK1 (5 mgkg(-1)). On the other hand, indometacin (10 mg kg(-1)), a non-selective cyclooxygenase inhibitor, did not alter the increase in mean arterial pressure (MAP) induced by VK1. However, VK1-induced fall in MAP was significantly attenuated by indometacin. We concluded that VK1 induces a dose-dependent effect on blood pressure that consists of an acute increase followed by a more sustained decrease in MAP. The hypotension induced by VK1 involves the activation of the nitric oxide (NO) pathway and the release of vasodilator prostanoid(s).
Resumo:
We examined the correlation between results obtained from the in vivo Draize test for ocular irritation and in vitro results obtained from the sheep red blood cell (RBC) haemolytic assay, which assesses haemolysis and protein denaturation in erythrocytes, induced by cosmetic products. We sought to validate the haemolytic assay as a preliminary test for identifying highly-irritative products, and also to evaluate the in vitro test as alternative assay for replacement of the in vivo test. In vitro and in vivo analyses were carried out on 19 cosmetic products, in order to correlate the lesions in the ocular structures with three in vitro parameters: (i) the extent of haemolysis (H50); (ii) the protein denaturation index (131); and (iii) the H50/DI ratio, which reflects the irritation potential (IP). There was significant correlation between maximum average scores (MAS) and the parameters determined in vitro (r = 0.752-0.764). These results indicate that the RBC assay is a useful and rapid test for use as a screening method to assess the IP of cosmetic products, and for predicting the IP value with a high level of concordance (94.7%). The assay showed high sensitivity and specificity rates of 91.6% and 100%, respectively.
Resumo:
We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.
Resumo:
Magnesium may influence blood pressure by modulating vascular tone and structure through its effects on myriad biochemical reactions that control vascular contraction/dilation, growth/apoptosis, differentiation and inflammation. Magnesium acts as a calcium channel antagonist, it stimulates production of vasodilator prostacyclins and nitric oxide and it alters vascular responses to vasoconstrictor agents. Mammalian cells regulate Mg(2+) concentration through special transport systems that have only recently been characterized. Magnesium efflux occurs via Na(2+)-dependent and Na(2+)-independent pathways. Mg(2+) influx is controlled by recently cloned transporters including Mrs2p, SLC41A1, SLC41A2, ACDP2, MagT1, TRPM6 and TRPM7. Alterations in some of these systems may contribute to hypomagnesemia and intracellular Mg(2+) deficiency in hypertension and other cardiovascular pathologies. In particular, increased Mg(2+) efflux through dysregulation of the vascular Na(+)/Mg(2+) exchanger and decreased Mg(2+) influx due to defective vascular and renal TRPM6/7 expression/activity may be important in altered vasomotor tone and consequently in blood pressure regulation. The present review discusses the role of Mg(2+) in vascular biology and implications in hypertension and focuses on the putative transport systems that control magnesium homeostasis in the vascular system. Much research is still needed to clarify the exact mechanisms of cardiovascular Mg(2+) regulation and the implications of aberrant cellular Mg(2+) transport and altered cation status in the pathogenesis of hypertension and other cardiovascular diseases.
Resumo:
Aim of the study: The latex of Calotropis procera has been used in the traditional medicinal system for the treatment of leprosy, ulcers, tumors, piles and diseases of liver, spleen, abdomen and toothache. it comprises of a non-dialyzable protein fraction (LP) that exhibits anti-inflammatory properties and a dialyzable fraction (DF) exhibiting pro-inflammatory properties. The present study was carried out to evaluate the effect of LP sub-fractions on neutrophil functions and nociception in rodent models and to elucidate the mediatory role of nitric oxide (NO). Material and methods: The LP was subjected to ion exchange chromatography and the effect of its three sub-fractions (LP(PI), LP(PII), and LP(PIII)) thus obtained was evaluated on leukocyte functions in the rat peritonitis model and on nociception in the mouse model. Results: LP sub-fractions exhibit distinct protein profile and produce a significant decrease in the carrageenan and DF induced neutrophil influx and exhibit anti-nociceptive property. The LP and its sub-fractions produced a marked reduction in the number of rolling and adherent leukocytes in the mesenteric microvasculature as revealed by intravital microscopy. The anti-inflammatory effect of LP(PI), the most potent anti-inflammatory fraction of LP, was accompanied by an increase in the serum levels of NO. Further, our study shows that NO is also involved in the inhibitory effect of LP(PI) on neutrophil influx. Conclusions: Our study shows that LP fraction of Calotropis procera comprises of three distinct sets of proteins exhibiting anti-inflammatory and anti-nociceptive properties of which LP(PI) was most potent in inhibiting neutrophil functions and its effects are mediated through NO production. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The endocannabinoid anandamide, in addition to activating cannabinoid type 1 receptors (CB1), may act as an agonist at transient receptor potential vanilloid type 1 (TRPV1) channels. In the periaqueductal gray, CB1 activation inhibits, whereas TRPV1 increases, anxiety-like behavior. In the medial prefrontal cortex (mPFC), another brain region related to defensive responses, CB1 activation induces anxiolytic-like effects. However, a possible involvement of TRPV1 is still unclear. In the present study, we tested the hypothesis that TRPV1 channel contributes to the modulation of anxiety-like behavior in the mPFC. Male Wistar rats (n = 5-7 per group) received microinjections of the TRPV1 antagonist capsazepine (1-60 nmol) in the ventral portion of the mPFC and were exposed to the elevated plus maze (EPM) or to the Vogel conflict test. Capsazepine increased exploration of open arms in the EPM as well as the number of punished licks in the Vogel conflict test, suggesting anxiolytic-like effects. No changes in the number of entries into the enclosed arms were observed in the EPM, indicating that there were no changes in motor activity. Moreover, capsazepine did not interfere with water consumption or nociceptive threshold, discarding potential confounding factors for the Vogel conflict test. These data suggest that TRPV1 in the ventral mPFC tonically inhibits anxiety-like behavior. TRPV1 could facilitate defensive responses opposing, therefore, the anxiolytic-like effects reported after local activation of CB1 receptors.
Resumo:
This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 daysprior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low-(LF; 0.25-1Hz) and high-frequency bands (HF; 1-5Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.
Resumo:
The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4] Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.
Resumo:
In the present study we evaluated the role of purinergic mechanisms in the PVN on the tonic modulation of the autonomic function to the cardiovascular system as well on the cardiovascular responses to peripheral chemoreflex activation in awake rats Guide-cannulae were bilaterally Implanted in the direction of the PVN of male Wistar rats Femoral artery and vein were catheterized one day before the experiments Chemoreflex was activated with KCN (30 mu g/0 05 ml iv) before and after microinjections of P2 receptors antagonist into the PVN Microinjection of PPADS a non selective P2X antagonist Into the PVN (n = 6) produced a significant increase in the baseline MAP (99 +/- 2 vs 112 +/- 3 mmHg) and HR (332 +/- 8 vs 375 +/- 8 bpm) but had no effect on the pressor and bradycardic responses to chemoreflex activation Intravenous injection of vasopres in receptors antagonist after microinjection of PPADS into the PVN produced no effect on the increased baseline MAP Simultaneous microinjection of PPADS and KYN into the PVN (n=6) had no effect in the baseline MAP HR or in the pressor and bradycardic responses to chemoreflex activation We conclude that P2 purinoceptors in the PVN are involved in the modulation of baseline autonomic function to the cardiovascular system but not in the cardiovascular responses to chemoreflex activation in awake rats (C) 2010 Elsevier B V All rights reserved