994 resultados para laser-matter interactions
Resumo:
Impulsivity is a personality trait exhibited by healthy individuals, but excessive impulsivity is associated with some mental disorders. Lesion and functional, neuroimaging Studies indicate that the ventromedial prefrontal region (VMPFC), including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and medial prefrontal cortex, and the amygdala may modulate impulsivity and aggression. However, no morphometric study has examined the association between VMPFC and impulsivity. We hypothesized that healthy subjects with high impulsivity would have smaller volumes in these brain regions compared with those with low impulsivity. Sixty-two healthy Subjects were Studied (age 35.4 +/- 12.1 years) using a 1.5-T MRI system. The Barratt impulsiveness scale (BIS) was used to assess impulsivity. Images were processed using an optimized voxel-based morphometry (VBM) protocol. We calculated the correlations between BIS scale scores and the gray matter (GM) and white matter (WM) volumes of VMPFC and amygdala. GM volumes of the left and right OFC were inversely correlated with the BIS total score (P = 0.04 and 0.02, respectively). Left ACC GM Volumes had a tendency to be inversely correlated with the BIS total score (P = 0.05. Right OFC GM Volumes were inversely correlated with BIS nonplanning impulsivity, and left OFC GM volumes were inversely correlated with motor impulsivity. There were no significant WM volume correlations with impulsivity. The results Of this morphometry Study indicate that small OFC volume relate to high impulsivity and extend the prior finding that the VMPFC is involved in the circuit modulating impulsivity. HUM Brain Mapp 30:1188-1195, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Objectives: Functional and postmortem studies suggest that the orbitofrontal cortex (OFC) is involved in the pathophysiology of bipolar disorder (BD). This anatomical magnetic resonance imaging (MRI) study examined whether BD patients have smaller OFC gray matter volumes compared to healthy comparison subjects (HC). Methods: Twenty-eight BD patients were compared to 28 age- and gender-matched HC. Subjects underwent a 1.5T MRI with 3D spoiled gradient recalled acquisition. Total OFC and medial and lateral subdivisions were manually traced by a blinded examiner. Images were segmented and gray matter volumes were calculated using an automated method. Results: Analysis of covariance, with intracranial volume as covariate, showed that BD patients and HC did not differ in gray matter volumes of total OFC or its subdivisions. However, total OFC gray matter volume was significantly smaller in depressed patients (n = 10) compared to euthymic patients (n = 18). Moreover, total OFC gray matter volumes were inversely correlated with depressive symptom intensity, as assessed by the Hamilton Depression Rating Scale. OFC gray matter volumes were not related to lithium treatment, age at disease onset, number of episodes, or family history of mood disorders. Conclusions: Our results suggest that abnormal OFC gray matter volumes are not a pervasive characteristic of BD, but may be associated with specific clinical features of the disorder.
Resumo:
Neuroimaging studies in bipolar disorder report gray matter volume (GMV) abnormalities in neural regions implicated in emotion regulation. This includes a reduction in ventral/orbital medial prefrontal cortex (OMPFC) GMV and, inconsistently, increases in amygdala GMV. We aimed to examine OMPFC and amygdala GMV in bipolar disorder type 1 patients (BPI) versus healthy control participants (HC), and the potential confounding effects of gender, clinical and illness history variables and psychotropic medication upon any group differences that were demonstrated in OMPFC and amygdala GMV Images were acquired from 27 BPI (17 euthymic, 10 depressed) and 28 age- and gender-matched HC in a 3T Siemens scanner. Data were analyzed with SPM5 using voxel-based morphometry (VBM) to assess main effects of diagnostic group and gender upon whole brain (WB) GMV. Post-hoc analyses were subsequently performed using SPSS to examine the extent to which clinical and illness history variables and psychotropic medication contributed to GMV abnormalities in BPI in a priori and non-a priori regions has demonstrated by the above VBM analyses. BPI showed reduced GMV in bilateral posteromedial rectal gyrus (PMRG), but no abnormalities in amygdala GMV. BPI also showed reduced GMV in two non-a priori regions: left parahippocampal gyrus and left putamen. For left PMRG GMV, there was a significant group by gender by trait anxiety interaction. GMV was significantly reduced in male low-trait anxiety BPI versus male low-trait anxiety HC, and in high-versus low-trait anxiety male BPI. Our results show that in BPI there were significant effects of gender and trait-anxiety, with male BPI and those high in trait-anxiety showing reduced left PMRG GMV. PMRG is part of medial prefrontal network implicated in visceromotor and emotion regulation. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Sacrococcygeal teratoma (SCT) is the commonest solid fetal tumor. Perinatal prognosis is usually favorable, but sometimes it can be complicated by fetal hydrops being responsible for high risk of mortality. Fetal therapy in such cases has so far not been established. We report a case with a giant solid SCT associated with fetal hydrops and severe heart failure. 2D- and 3D-Doppler ultrasonography revealed great vessels originated from the medial sacral artery. Percutaneous laser ablation of these vessels was performed at 24 weeks of gestation. During the procedure, severe anemia was also diagnosed (hemoglobin 4.3 g/dl). Two days later, the fetus died and pathological examination revealed local tumor necrosis and blood hemorrhage inside the mass. We suggest that in such cases, fetal surgery may not be enough, being too late, and perhaps fetal clinical therapy for anemia and heart failure could be the best option at a gestational age of less than 28 weeks. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Previous studies have suggested that bipolar disorder (BD) is associated with alterations in neuronal plasticity, but the effects of the progression of illness on brain anatomy have been poorly investigated. We studied the correlation between length of illness, age, age at onset, and the number of previous episodes and total brain, total gray, and total white matter volumes in BD, unipolar (UP) and healthy control (HC) subjects. Thirty-six BD, 31 UP and 55 HCs underwent a 1.5 T brain magnetic resonance imaging scan, and gray and white matter volumes were manually traced blinded to the subjects` diagnosis. Partial correlation analysis showed that length of illness was inversely correlated with total gray matter volume after adjusting for total intracranial volume in BD (r(p)=-0.51; p=0.003) but not in UP subjects (r(p)=-0.23; p=0.21). Age at illness onset and the number of previous episodes were not significantly correlated with gray matter volumes in BD or UP subjects. No significant correlation with total white matter volume was observed. These results suggest that the progression of illness may be associated with abnormal cellular plasticity. Prospective longitudinal studies are necessary to elucidate the long-term effects of illness progression on brain structure in major mood disorders. (C) 2008 Published by Elsevier B.V.
Resumo:
Previous studies have shown that patients with major depression have an interhemispheric imbalance between right and left prefrontal and motor cortex. We aimed to investigate the interhemispheric interactions in patients with major depression using repetitive transcranial magnetic stimulation (rTMS). Thirteen patients with major depression and 14 age-matched healthy subjects participated in this study. Corticospinal excitability before and after 1 Hz rTMS (applied to the left primary motor cortex) was assessed in the left and right motor cortex and these results were compared with those in healthy subjects. There was a significant difference in the interhemispheric effects between patients with depression and healthy subjects. In healthy subjects, 1 Hz rTMS significantly decreased corticospinal excitability in the stimulated, left hemisphere and increased it in the contralateral, right hemisphere. In depressed subjects, 1 Hz rTMS also decreased corticospinal excitability in the left hemisphere; however, it induced no significant changes in corticospinal excitability in the contralateral, right hemisphere. In addition, there was a significant correlation between the degree of interhemispheric modulation and the severity of the depression as indexed by the Beck Depression Inventory scores. Our findings showing a decreased interhemispheric modulation in patients with major depression are consistent with the notion that mood disorders are associated with slow interhemispheric switching mechanisms.
Resumo:
PURPOSE: To compare the abilities of scanning laser polarimetry (SLP) with enhanced corneal compensation (ECC) and variable corneal compensation (VCC) modes for detection of retinal nerve fiber layer (RNFL) loss in eyes with band atrophy (BA) of the optic nerve. DESIGN. Cross-sectional study. METHODS: Thirty-seven eyes from 37 patients with BA and temporal visual field defect from chiasmal compression and 40 eyes from 40 healthy subjects were studied. Subjects underwent standard automated perimetry and RNFL measurements using an SLP device equipped with VCC and ECC. Receiver operating characteristic (ROC) curves were calculated for each parameter. Pearson correlation coefficients were obtained to evaluate the relationship between RNFL thickness parameters and severity of visual field loss, as assessed by the temporal mean defect. RESULTS: All RNFL thickness parameters were significantly lower in eyes with BA compared with normal eyes with both compensation modes. However, no statistically significant differences were observed in the areas under the ROC curves for the different parameters between GDx VCC and ECC (Carl Zeiss Meditec, Inc, Dublin, California, USA). Structure-function relationships also were similar for both compensation modes. CONCLUSIONS: No significant differences were found between the diagnostic accuracy of GDx ECC and that of VCC for detection of BA of the optic nerve. The use of GDx ECC does not seem to provide a better evaluation of RNFL loss on the temporal and nasal sectors of the peripapillary retina in subjects with BA of the optic nerve.
Resumo:
Background. Periodontal disease is often associated with systemic diseases and is characterized by destruction of the tissues supporting the teeth. Patients using immunosuppressive drugs such as tacrolimus are among those who suffer from tissue destruction. Objective. We sought to evaluate the effects of laser and photodynamic therapies (PDT; nonsurgical) as an adjunct to scaling and rootplaning (SRP) in the treatment of corona-induced periodontitis in rats immunosuppressed with tacrolimus (Prograf). Materials and Methods. The animals were divided into 5 groups. Each groups had 6 rats. Group I, the control group, received only saline solution throughout the study period of 42 days and did not receive periodontal treatment; group II received saline solution and SRP; group III received tacrolimus (1 mg/kg per day) and was treated with SRP; group IV animals were treated identically to group III and then administered laser treatment; and in group V, the animals were treated identically to group III and then administered PDT. Results. Statistical analysis indicated decreased bone loss with the progression of time (P = .035). There was no difference between the bone loss associated with the types of treatment administered to groups I, II, and III (P > .9) or groups IV and V (P > .6). The analysis also indicated that immunosuppression was not a bone loss-determining factor. Conclusion. Laser and PDT therapies were effective as an adjunctive treatment to SRP in reducing bone loss caused by experimental periodontitis induced in animals being treated systemically with tacrolimus.
Resumo:
Recent studies have investigated whether low level laser therapy (LLLT) can optimize human muscle performance in physical exercise. This study tested the effect of LLLT on muscle performance in physical strength training in humans compared with strength training only. The study involved 36 men (20.8 +/- 2.2 years old), clinically healthy, with a beginner and/or moderate physical activity training pattern. The subjects were randomly distributed into three groups: TLG (training with LLLT), TG (training only) and CG (control). The training for TG and TLG subjects involved the leg-press exercise with a load equal to 80% of one repetition maximum (1RM) in the leg-press test over 12 consecutive weeks. The LLLT was applied to the quadriceps muscle of both lower limbs of the TLG subjects immediately after the end of each training session. Using an infrared laser device (808 nm) with six diodes of 60 mW each a total energy of 50.4 J of LLLT was administered over 140 s. Muscle strength was assessed using the 1RM leg-press test and the isokinetic dynamometer test. The muscle volume of the thigh of the dominant limb was assessed by thigh perimetry. The TLG subjects showed an increase of 55% in the 1RM leg-press test, which was significantly higher than the increases in the TG subjects (26%, P = 0.033) and in the CG subjects (0.27%, P < 0.001). The TLG was the only group to show an increase in muscle performance in the isokinetic dynamometry test compared with baseline. The increases in thigh perimeter in the TLG subjects and TG subjects were not significantly different (4.52% and 2.75%, respectively; P = 0.775). Strength training associated with LLLT can increase muscle performance compared with strength training only.
Resumo:
Peripheral nerves are structures that, when damaged, can result in significant motor and sensory disabilities. Several studies have used therapeutic resources with the aim of promoting early nerve regeneration, such as the use of low-power laser. However, this laser therapy does not represent a consensus regarding the methodology, thus yielding controversial conclusions. The objective of our study was to investigate, by functional evaluation, the comparative effects of low-power laser (660 nm and 830 nm) on sciatic nerve regeneration following crushing injuries. Twenty-seven Wistar rats subjected to sciatic nerve injury were divided into three groups: group sham, consisting of rats undergoing simulated irradiation; a group consisting of rats subjected to gallium-aluminum-arsenide (GaAlAs) laser at 660 nm (10 J/cm(2), 30 mW and 0.06 cm(2) beam), and another one consisting of rats subjected to GaAlAs laser at 830 nm (10 J/cm(2), 30 mW and 0.116 cm(2)). Laser was applied to the lesion for 21 days. A sciatic functional index (SFI) was used for functional evaluation prior to surgery and on days 7, 14, and 21 after surgery. Differences in SFI were found between group 660 nm and the other ones at the 14th day. One can observe that laser application at 660 nm with the parameters and methods utilised was effective in promoting early functional recovery, as indicated by the SFI, over the period evaluated.
Resumo:
Objective: To study the influence of low power GaAsAl laser irradiation on the regeneration of a peripheral nerve, following a controlled crush injury. Material and methods: The right common fibular nerve of 30 Wistar rats was submitted to a crush injury with an adjustable load forceps (5 000 g, 10 minutes of application). The animals were divided into three groups (n=10), according to the postoperative procedure (no irradiation; sham irradiation; effective irradiation). Laser irradiation (830 nm wave-length; 100 mW emission power; continuous mode; 140 J/cm(2)) was started on the first postoperative day and continued over 21 consecutive days. Body mass, time spent on the walking track and functional peroneal index (PFI) were analyzed based on the hind footprints, both preoperatively and on the 21st postoperative day. Results: Walking time and PFI significantly improved in the group that received effective laser irradiation, despite the significant gain in body mass between the pre- and post-operative periods. Conclusion: Low Power GaAsAl laser irradiation, with the parameters used in our study, accelerated and improved fibular nerve regeneration in rats.
Resumo:
Objective: This study seeks to determine, through functional gait assessment in different irradiation sites, the influence of a low-intensity GaAsAl laser beam on an injury caused by crushing the peroneal nerve in rats. Methods: 53 rats were used, which were divided into six groups: normal, injured and untreated, injured and treated using placebo, injured and treated in the bone marrow, injured and treated in the nerve, and injured and treated in both (nerve and bone marrow). The peroneal nerve was crushed using a pair of tweezers, and subsequently treated with laser for 28 consecutive days. The functional gait evaluation analyzed the footprints, which were recorded with a video camera on an acrylic bridge in the preoperative period, and on postoperative days 14, 21 and 28, and assessed using PFI formula software. Results: In the functional gait evaluation, significant differences were found only on postoperative day 14. Conclusion: Based on the functional gait evaluation, low-intensity GaAs AI irradiation was able to accelerate and reinforce the process of peripheral nerve regeneration in rats on postoperative day 14, both in the bone marrow- and in the nerve-treated groups.