963 resultados para irreversible


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The copper(II) complex [Cu(bdoa)(H2O)2] (bdoaH2 = benzene-1,2-dioxyacetic acid) reacts with triphenylphosphine (1:4 mol ratio) to give the colourless copper(I) complex [Cu(η1-bdoaH)(PPh3)3] (1) in good yield. The X-ray crystal structure of the complex shows the copper atom at the centre of a distorted tetrahedron, and is ligated by the phosphorus atoms of the three triphenylphosphines and one carboxylate oxygen atom of the bdoaH− ligand. Significant intermolecular hydrogen-bonding exists between the pendant carboxylate OH function of one molecule and the uncoordinated “ketonic” oxygen of a neighbouring molecule. Complex 1 is non-conducting in chloroform but ionizes readily in acetonitrile. The cyclic voltammogram of an acetonitrile solution of 1 shows a single irreversible anodic peak for the oxidation of the PPh3 ligands and the copper(I) centre, and a single irreversible cathodic peak for the reduction of the bdoaH− ion. IR and mass spectral data for 1 are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The irreversible binding of selected sulfur-containing flavor compounds to proteins was investigated in aqueous solutions containing ovalbumin and a mixture of disulfides (diethyl, dipropyl, dibutyl, diallyl, and 2-furfuryl methyl) using solid-phase micro-extraction (SPME). In systems which had not been heated, the recovery of disulfides from the headspace above the protein at the native pH (6.7) was similar to that from an aqueous blank. However, significant losses were observed when the pH of the solution was increased to 8.0. When the protein was denatured by heating, much greater losses were observed and some free thiols were produced. In similar heat-denatured systems at pH 2.0, no losses of disulfides were observed. Disulfides containing allyl or furfuryl groups were more reactive than saturated alkyl disulfides. Interchange reactions between protein sulfhydryl groups and the disulfides are believed to be responsible for the loss of the disulfides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To review perceived emotional well-being in older people with visual impairment and perceived factors that inhibit/facilitate psychosocial adjustment to vision loss. Method: The databases of MEDLINE, EMBASE, PsycINFO and CINAHL were searched for studies published from January 1980 to December 2010, which recruited older people with irreversible vision loss, and used qualitative methods for both data collection and analysis. Results sections of the papers were synthesised using a thematic-style analysis to identify the emergent and dominant themes. Results: Seventeen qualitative papers were included in the review, and five main themes emerged from the synthesis: 1) the trauma of an ophthalmic diagnosis, 2) impact of vision loss on daily life, 3) negative impact of visual impairment on psychosocial well-being, 4) factors that inhibit social well-being, and 5) factors that facilitate psychological well-being. We found the response shift model useful for explaining our synthesis. Conclusions: Acquired visual impairment can have a significant impact on older people's well-being and make psychosocial adjustment to the condition a major challenge. Acceptance of the condition and a positive attitude facilitate successful psychosocial adjustment to vision loss as well as social support from family, friends and peers who have successfully adjusted to the condition. [Box: see text].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lorenz’s theory of available p otential energy (APE) remains the main framework for studying the atmospheric and oceanic energy cycles. Because the APE generation rate is the volume integral of a thermodynamic efficiency times the local diabatic heating/cooling rate, APE theory is often regarded as an extension of the theory of heat engines. Available energetics in classical thermodynamics, however, usually relies on the concept of exergy, and is usually measured relative to a reference state maximising entropy at constant energy, whereas APE’s reference state minimises p otential energy at constant entropy. This review seeks to shed light on the two concepts; it covers local formulations of available energetics, alternative views of the dynamics/thermodynamics coupling, APE theory and the second law, APE production/dissipation, extensions to binary fluids, mean/eddy decomp ositions, APE in incompressible fluids, APE and irreversible turbulent mixing, and the role of mechanical forcing on APE production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of turbulence in the ocean surface layer is investigated using a simplified semi-analytical model based on rapid-distortion theory. In this model, which is linear with respect to the turbulence, the flow comprises a mean Eulerian shear current, the Stokes drift of an irrotational surface wave, which accounts for the irreversible effect of the waves on the turbulence, and the turbulence itself, whose time evolution is calculated. By analysing the equations of motion used in the model, which are linearised versions of the Craik–Leibovich equations containing a ‘vortex force’, it is found that a flow including mean shear and a Stokes drift is formally equivalent to a flow including mean shear and rotation. In particular, Craik and Leibovich’s condition for the linear instability of the first kind of flow is equivalent to Bradshaw’s condition for the linear instability of the second. However, the present study goes beyond linear stability analyses by considering flow disturbances of finite amplitude, which allows calculating turbulence statistics and addressing cases where the linear stability is neutral. Results from the model show that the turbulence displays a structure with a continuous variation of the anisotropy and elongation, ranging from streaky structures, for distortion by shear only, to streamwise vortices resembling Langmuir circulations, for distortion by Stokes drift only. The TKE grows faster for distortion by a shear and a Stokes drift gradient with the same sign (a situation relevant to wind waves), but the turbulence is more isotropic in that case (which is linearly unstable to Langmuir circulations).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanisms that arrest G-protein-coupled receptor (GPCR) signaling prevent uncontrolled stimulation that could cause disease. Although uncoupling from heterotrimeric G-proteins, which transiently arrests signaling, is well described, little is known about the mechanisms that permanently arrest signaling. Here we reported on the mechanisms that terminate signaling by protease-activated receptor 2 (PAR(2)), which mediated the proinflammatory and nociceptive actions of proteases. Given its irreversible mechanism of proteolytic activation, PAR(2) is a model to study the permanent arrest of GPCR signaling. By immunoprecipitation and immunoblotting, we observed that activated PAR(2) was mono-ubiquitinated. Immunofluorescence indicated that activated PAR(2) translocated from the plasma membrane to early endosomes and lysosomes where it was degraded, as determined by immunoblotting. Mutant PAR(2) lacking intracellular lysine residues (PAR(2)Delta14K/R) was expressed at the plasma membrane and signaled normally but was not ubiquitinated. Activated PAR(2) Delta14K/R internalized but was retained in early endosomes and avoided lysosomal degradation. Activation of wild type PAR(2) stimulated tyrosine phosphorylation of the ubiquitin-protein isopeptide ligase c-Cbl and promoted its interaction with PAR(2) at the plasma membrane and in endosomes in an Src-dependent manner. Dominant negative c-Cbl lacking the ring finger domain inhibited PAR(2) ubiquitination and induced retention in early endosomes, thereby impeding lysosomal degradation. Although wild type PAR(2) was degraded, and recovery of agonist responses required synthesis of new receptors, lysine mutation and dominant negative c-Cbl impeded receptor ubiquitination and degradation and allowed PAR(2) to recycle and continue to signal. Thus, c-Cbl mediated ubiquitination and lysosomal degradation of PAR(2) to irrevocably terminate signaling by this and perhaps other GPCRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PARs (protease-activated receptors) are a family of four G-protein-coupled receptors for proteases from the circulation, inflammatory cells and epithelial tissues. This report focuses on PAR(2), which plays an important role in inflammation and pain. Pancreatic (trypsin I and II) and extrapancreatic (trypsin IV) trypsins, mast cell tryptase and coagulation factors VIIa and Xa cleave and activate PAR(2). Proteases cleave PAR(2) to expose a tethered ligand that binds to the cleaved receptor. Despite this irreversible activation, PAR(2) signalling is attenuated by beta-arrestin-mediated desensitization and endocytosis, and by lysosomal targeting and degradation, which requires ubiquitination of PAR(2). beta-Arrestins also act as scaffolds for the assembly of multi-protein signalling complexes that determine the location and function of activated mitogen-activated protein kinases. Observations of PAR(2)-deficient mice support a role for PAR(2) in inflammation, and many of the effects of PAR(2) activators promote inflammation. Inflammation is mediated in part by activation of PAR(2) in the peripheral nervous system, which results in neurogenic inflammation and hyperalgesia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Certain extracellular proteases, derived from the circulation and inflammatory cells, can specifically cleave and trigger protease-activated receptors (PARs), a small, but important, sub-group of the G-protein-coupled receptor super-family. Four PARs have been cloned and they all share the same basic mechanism of activation: proteases cleave at a specific site within the extracellular N-terminus to expose a new N-terminal tethered ligand domain, which binds to and thereby activates the cleaved receptor. Thrombin activates PAR1, PAR3 and PAR4, trypsin activates PAR2 and PAR4, and mast cell tryptase activates PAR2 in this manner. Activated PARs couple to signalling cascades that affect cell shape, secretion, integrin activation, metabolic responses, transcriptional responses and cell motility. PARs are 'single-use' receptors: proteolytic activation is irreversible and the cleaved receptors are degraded in lysosomes. Thus, PARs play important roles in 'emergency situations', such as trauma and inflammation. The availability of selective agonists and antagonists of protease inhibitors and of genetic models has generated evidence to suggests that proteases and their receptors play important roles in coagulation, inflammation, pain, healing and protection. Therefore, selective antagonists or agonists of these receptors may be useful therapeutic agents for the treatment of human diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of salicylaldehyde semicarbazone (L-1), 2-hydroxyacetophenone semicarbazone (L-2), and 2-hydroxynaphthaldehyde semicarbazone (L-3) with [Pd(PPh3)(2)Cl-2] in ethanol in the presence of a base (NEt3) affords a family of yellow complexes (1a, 1b and 1c, respectively). In these complexes the semicarbazone ligands are coordinated to palladium in a rather unusual tridentate ONN-mode, and a PPh3 also remains coordinated to the metal center. Crystal structures of the 1b and 1c complexes have been determined, and structure of 1a has been optimized by a DFT method. In these complexes two potential donor sites of the coordinated semicarbazone, viz. the hydrazinic nitrogen and carbonylic oxygen, remain unutilized. Further reaction of these palladium complexes (1a, 1b and 1c) with [Ru(PPh3)(2)(CO)(2)Cl-2] yields a family of orange complexes (2a, 2b and 2c, respectively). In these heterodinuclear (Pd-Ru) complexes, the hydrazinic nitrogen (via dissociation of the N-H proton) and the carbonylic oxygen from the palladium-containing fragment bind to the ruthenium center by displacing a chloride and a carbonyl. Crystal structures of 2a and 2c have been determined, and the structure of 2b has been optimized by a DFT method. All the complexes show characteristic H-1 NMR spectra and, intense absorptions in the visible and ultraviolet region. Cyclic voltammetry on all the complexes shows an irreversible oxidation of the coordinated semicarbazone within 0.86-0.93 V vs. SCE, and an irreversible reduction of the same ligand within -0.96 to -1.14 V vs. SCE. Both the mononuclear (1a, 1b and 1c) and heterodinuclear (2a, 2b and 2c) complexes are found to efficiently catalyze Suzuki, Heck and Sonogashira type C-C coupling reactions utilizing a variety of aryl bromides and aryl chlorides. The Pd-Ru complexes (2a, 2b and 2c) are found to be better catalysts than the Pd complexes (1a, 1b and 1c) for Suzuki and Heck coupling reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three Cu(II)-azido complexes of formula [Cu2L2(N-3)(2)] (1), [Cu2L2(N-3)(2)]center dot H2O (2) and [CuL(N-3)](n) (3) have been synthesized using the same tridentate Schiff base ligand HL (2-[(3-methylaminopropylimino)-methyl]-phenol), the condensation product of N-methyl-1,3-propanediamine and salicyldehyde). Compounds 1 and 2 are basal-apical mu-1,1 double azido bridged dimers. The dimeric structure of 1 is centro-symmetric but that of 2 is non-centrommetric. Compound 3 is a mu-1,1 single azido bridged 1D chain. The three complexes interconvert in solution and can be obtained in pure form by carefully controlling the synthetic conditions. Compound 2 undergoes an irreversible transformation to 1 upon dehydration in the solid state. The magnetic properties of compounds 1 and 2 show the presence of weak antiferromagnetic exchange interactions mediated by the double 1,1-N-3 azido bridges (J = -2.59(4) and -0.10(1) cm-(1), respectively). The single 1,1-N-3 bridge in compound 3 mediates a negligible exchange interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of salicylaldehyde thiosemicarbazone (L-1), 2-hydroxyacetophenone thiosemicarbazone (L-2) and 2-hydroxynapthaldehyde thiosemicarbazone (L-3) with [Ru(dmso)(4)Cl-2] affords a family of three dimeric complexes (1), (2) and (3) respectively. Crystal structure of the complex (3) has been determined. In these complexes, each monomeric unit consists of one ruthenium center and two thiosemicarbazone ligands, one of which is coordinated to ruthenium as O,N,S-donor and the other as N,S-donor forming a five-membered chelate ring. Two such monomeric units remain bridged by the sulfur atoms of the O,N,S-coordinated thiosemicarbazones. Due to this sulfur bridging, the two ruthenium centers become so close to each other, that a ruthenium-ruthenium single bond is also formed. All the complexes are diamagnetic in the solid state and in dimethylsulfoxide solution show intense absorptions in the visible and ultraviolet region. Origin of these spectral transitions has been established from DFT calculations. Cyclic voltammetry on the complexes shows two irreversible ligand oxidations on the positive side of SCE and two irreversible ligand reductions on the negative side.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymers are used in many everyday technologies and their degradation due to environmental exposure has lead to great interest in materials which can heal and repair themselves. In order to design new self healing polymers it's important to understand the fundamental healing mechanisms behind the material.Healable Polymer Systems will outline the key concepts and mechanisms underpinning the design and processing of healable polymers, and indicate potential directions for progress in the future development and applications of these fascinating and potentially valuable materials. The book covers the different techniques developed successfully to date for both autonomous healable materials (those which do not require an external stimulus to promote healing) and rehealable or remendable materials (those which only recover their original physical properties if a specific stimulus is applied). These include the encapsulated-monomer approach, reversible covalent bond formation, irreversible covalent bond formation and supramolecular self-assembly providing detailed insights into their chemistry.Written by leading experts, the book provides polymer scientists with a compact and readily accessible source of reference for healable polymer systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The situation considered is that of a zonally symmetric model of the middle atmosphere subject to a given quasi-steady zonal force F̄, conceived to be the result of irreversible angular momentum transfer due to the upward propagation and breaking of Rossby and gravity waves together with any other dissipative eddy effects that may be relevant. The model's diabatic heating is assumed to have the qualitative character of a relaxation toward some radiatively determined temperature field. To the extent that the force F̄ may be regarded as given, and the extratropical angular momentum distribution is realistic, the extratropical diabatic mass flow across a given isentropic surface may be regarded as controlled exclusively by the F̄ distribution above that surface (implying control by the eddy dissipation above that surface and not, for instance, by the frequency of tropopause folding below). This “downward control” principle expresses a critical part of the dynamical chain of cause and effect governing the average rate at which photochemical products like ozone become available for folding into, or otherwise descending into, the extratropical troposphere. The dynamical facts expressed by the principle are also relevant, for instance, to understanding the seasonal-mean rate of upwelling of water vapor to the summer mesopause, and the interhemispheric differences in stratospheric tracer transport. The robustness of the principle is examined when F̄ is time-dependent. For a global-scale, zonally symmetric diabatic circulation with a Brewer-Dobson-like horizontal structure given by the second zonally symmetric Hough mode, with Rossby height HR = 13 km in an isothermal atmosphere with density scale height H = 7 km, the vertical partitioning of the unsteady part of the mass circulation caused by fluctuations in F̄ confined to a shallow layer LF̄ is always at least 84% downward. It is 90% downward when the force fluctuates sinusoidally on twice the radiative relaxation timescale and 95% if five times slower. The time-dependent adjustment when F̄ is changed suddenly is elucidated, extending the work of Dickinson (1968), when the atmosphere is unbounded above and below. Above the forcing, the adjustment is characterized by decay of the meridional mass circulation cell at a rate proportional to the radiative relaxation rate τr−1 divided by {1 + (4H2/HR2)}. This decay is related to the boundedness of the angular momentum that can be taken up by the finite mass of air above LF̄ without causing an ever-increasing departure from thermal wind balance. Below the forcing, the meridional mass circulation cell penetrates downward at a speed τr−1 HR2/H. For the second Hough mode, the time for downward penetration through one density scale height is about 6 days if the radiative relaxation time is 20 days, the latter being representative of the lower stratosphere. At any given altitude, a steady state is approached. The effect of a rigid lower boundary on the time-dependent adjustment is also considered. If a frictional planetary boundary layer is present then a steady state is ultimately approached everywhere, with the mass circulation extending downward from LF̄ and closing via the boundary layer. Satellite observations of temperature and ozone are used in conjunction with a radiative transfer scheme to estimate the altitudes from which the lower stratospheric diabatic vertical velocity is controlled by the effective F̄ in the real atmosphere. The data appear to indicate that about 80% of the effective control is usually exerted from below 40 km but with significant exceptions up to 70 km (in the high latitude southern hemispheric winter). The implications for numerical modelling of chemical transport are noted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coupled climate dynamics underlying large, rapid, and potentially irreversible changes in ice cover are studied. A global atmosphere–ocean–sea ice general circulation model with idealized aquaplanet geometry is forced by gradual multi-millennial variations in solar luminosity. The model traverses a hysteresis loop between warm ice-free conditions and cold glacial conditions in response to ±5 W m−2 variations in global, annual-mean insolation. Comparison of several model configurations confirms the importance of polar ocean processes in setting the sensitivity and time scales of the transitions. A “sawtooth” character is found with faster warming and slower cooling, reflecting the opposing effects of surface heating and cooling on upper-ocean buoyancy and, thus, effective heat capacity. The transition from a glacial to warm, equable climate occurs in about 200 years. In contrast to the “freshwater hosing” scenario, transitions are driven by radiative forcing and sea ice feedbacks. The ocean circulation, and notably the meridional overturning circulation (MOC), does not drive the climate change. The MOC (and associated heat transport) collapses poleward of the advancing ice edge, but this is a purely passive response to cooling and ice expansion. The MOC does, however, play a key role in setting the time scales of the transition and contributes to the asymmetry between warming and cooling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method of classifying the upper tropospheric/lower stratospheric (UTLS) jets has been developed that allows satellite and aircraft trace gas data and meteorological fields to be efficiently mapped in a jet coordinate view. A detailed characterization of multiple tropopauses accompanies the jet characterization. Jet climatologies show the well-known high altitude subtropical and lower altitude polar jets in the upper troposphere, as well as a pattern of concentric polar and subtropical jets in the Southern Hemisphere, and shifts of the primary jet to high latitudes associated with blocking ridges in Northern Hemisphere winter. The jet-coordinate view segregates air masses differently than the commonly-used equivalent latitude (EqL) coordinate throughout the lowermost stratosphere and in the upper troposphere. Mapping O3 data from the Aura Microwave Limb Sounder (MLS) satellite and the Winter Storms aircraft datasets in jet coordinates thus emphasizes different aspects of the circulation compared to an EqL-coordinate framework: the jet coordinate reorders the data geometrically, thus highlighting the strong PV, tropopause height and trace gas gradients across the subtropical jet, whereas EqL is a dynamical coordinate that may blur these spatial relationships but provides information on irreversible transport. The jet coordinate view identifies the concentration of stratospheric ozone well below the tropopause in the region poleward of and below the jet core, as well as other transport features associated with the upper tropospheric jets. Using the jet information in EqL coordinates allows us to study trace gas distributions in regions of weak versus strong jets, and demonstrates weaker transport barriers in regions with less jet influence. MLS and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer trace gas fields for spring 2008 in jet coordinates show very strong, closely correlated, PV, tropopause height and trace gas gradients across the jet, and evidence of intrusions of stratospheric air below the tropopause below and poleward of the subtropical jet; these features are consistent between instruments and among multiple trace gases. Our characterization of the jets is facilitating studies that will improve our understanding of upper tropospheric trace gas evolution.