856 resultados para intensity modulated sensors
Resumo:
Potentiometric ion sensors are a very important subgroup of electrochemical sensors, very attractive for practical applications due to their small size, portability, low-energy consumption, relatively low cost and not changing the sample composition. They are investigated by the researchers from many fields of science. The continuous development of this field creates the necessity for a detailed description of sensor response and the electrochemical processes important in the practical applications of ion sensors. The aim of this thesis is to present the existing models available for the description of potentiometric ion sensors as well as their applicability and limitations. This includes the description of the diffusion potential occurring at the reference electrodes. The wide range of existing models, from most idealised phase boundary models to most general models, including migration, is discussed. This work concentrates on the advanced modelling of ion sensors, namely the Nernst-Planck-Poisson (NPP) model, which is the most general of the presented models, therefore the most widely applicable. It allows the modelling of the transport processes occurring in ion sensors and generating the potentiometric response. Details of the solution of the NPP model (including the numerical methods used) are shown. The comparisons between NPP and the more idealized models are presented. The applicability of the model to describe the formation of diffusion potential in reference electrode, the lower detection limit of both ion-exchanger and neutral carrier electrodes and the effect of the complexation in the membrane are discussed. The model was applied for the description of both types of electrodes, i.e. with the inner filling solution and solidcontact electrodes. The NPP model allows the electrochemical methods other than potentiometry to be described. Application of this model in Electrochemical Impedance Spectroscopy is discussed and a possible use in chrono-potentiometry is indicated. By combining the NPP model with evolutionary algorithms, namely Hierarchical Genetic Strategy (HGS), a novel method allowing the facilitation of the design of ion sensors was created. It is described in detail in this thesis and its possible applications in the field of ion sensors are indicated. Finally, some interesting effects occurring in the ion sensors (i.e. overshot response and influence of anionic sites) as well as the possible applications of NPP in biochemistry are described.
Resumo:
The irrigation is a technique developed to supply the hydric needs of the plants. The use of the water should be optimized so that the culture just has enough for its growth, avoiding waste. The objective of this work was to characterize the behavior of capacitive sensors of humidity to monitor the moisture in the soils. In first instance, it was appraised sensors with dielectric built of synthetic pomes stone (Rd = 0,4 and Rd = 0,8) and of soil samples (Rd = 0,8 and Rd = 1,0), being the Rd parameter a geometric factor that relates the distance between the capacitor plates with radius of the plates. For the calibration, the sensors were installed in PVC recipient of cylindrical shape, filled with soil. The set (sensor and soil) was humidified by capillary effect and submitted by a natural drying very slowly. The parameter readings were taken daily, which allowed obtain the curves relating the humidity percentage, expressed in terms of dry weight, with the output voltage fort the sensor. The experiments were performed in sand soil and in dark red latossolo. The obtained results allowed to infer that the behavior of the sensor has a specific feature for each type of soil, being, therefore, necessary to develop a own calibration curve for the sensor, when used in soil with specific characteristic.
Resumo:
The degree of flowering and fruiting synchronization is believed to have ecological and evolutionary relevance at several scales. Here we discuss some measures that have been used to estimate synchrony and propose an index that incorporates both the entire length of an individual phenophase and variation in the number of flowers or fruits over that time period. This new index describes more accurately the phenological synchrony among individuals and populations.
Resumo:
Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP) and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10) submitted to phenylephrine (PE) stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (P<0.05) together with arterial blood pressure (P<0.05). In the second protocol, we measured left ventricular isovolumic systolic pressure (ISP) and CPP in Langendorff constant flow-perfused hearts. The hearts (N = 7) were perfused with increasing flow rates under control conditions and PE or PE + nitroprusside (NP). Both CPP and ISP increased (P<0.01) as a function of flow. CPP changes were not affected by drug treatment but ISP increased (P<0.01). The largest ISP increase was obtained with PE + NP treatment (P<0.01). The results suggest that both mechanisms, i.e., direct stimulation of myocardial a1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.
Resumo:
The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix) type, S100A1 and S100B, that have been shown to inhibit microtubule (MT) protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF) subunits, desmin and glial fibrillary acidic protein (GFAP), with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 µM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head) domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B) represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.
Resumo:
We measured human contrast sensitivity to radial frequencies modulated by cylindrical (Jo) and spherical (j o) Bessel profiles. We also measured responses to profiles of j o, j1, j2, j4, j8, and j16. Functions were measured three times by at least three of eight observers using a forced-choice method. The results conform to our expectations that sensitivity would be higher for cylindrical profiles. We also observed that contrast sensitivity is increased with the j n order for n greater than zero, having distinct orderly effects at the low and high frequency ends. For n = 0, 1, 2, and 4 sensitivity tended to occur around 0.8-1.0 cpd while for n = 8 and 16 it seemed to shift gradually to 0.8-3.0 cpd. We interpret these results as being consistent with the possibility that spatial frequency processing by the human visual system can be defined a priori in terms of polar coordinates and discuss its application to study face perception.
Resumo:
Mesial temporal lobe epilepsy (MTLE) is associated with hippocampal atrophy and hippocampal signal abnormalities. In our series of familial MTLE (FMTLE), we found a high proportion of hippocampal abnormalities. To quantify signal abnormalities in patients with FMTLE we studied 152 individuals (46 of them asymptomatic) with FMTLE. We used NIH-Image® for volumetry and signal quantification in coronal T1 inversion recovery and T2 for all cross-sections of the hippocampus. Values diverging by 2 or more SD from the control mean were considered abnormal. T2 hippocampal signal abnormalities were found in 52% of all individuals: 54% of affected subjects and 48% of asymptomatic subjects. T1 hippocampal signal changes were found in 34% of all individuals: 42.5% of affected subjects and 15% of asymptomatic subjects. Analysis of the hippocampal head (first three slices) revealed T2 abnormalities in 73% of all individuals (74% of affected subjects and 72% of asymptomatic subjects) and T1 abnormalities in 59% (67% of affected subjects and 41% of asymptomatic subjects). Affected individuals had smaller volumes than controls (P < 0.0001). There was no difference in hippocampal volumes between asymptomatic subjects and controls, although 39% of asymptomatic patients had hippocampal atrophy. Patients with an abnormal hippocampal signal (133 individuals) had smaller ipsilateral volume, but no linear correlation could be determined. Hippocampal signal abnormalities in FMTLE were more frequently found in the hippocampal head in both affected and asymptomatic family members, including those with normal volumes. These results indicate that subtle abnormalities leading to an abnormal hippocampal signal in FMTLE are not necessarily related to seizures and may be determined by genetic factors.
Resumo:
Various categories of food packaging indicators namely; VTT, Ageless Eye, Mocon, Åbo Akademi and Impak were selected and incorporated into food trays manufactured at LUT packaging laboratory. Each of these food packaging indicators was used to investigate (visually and qualitatively) the transmission of oxygen through the seal, and tray material, as well as to detect microbial activity within the content of the package. Applications of different methods of gas flushing, content variation and introduction of two distinct levels of oxygen scavengers were employed as treatments to evaluate the packaging performance of the food packaging indicators. Ease of handling of each food packaging indicator was also taken into considerations. Findings showed that for packages, which contained chicken product, the amount of oxygen in the package, measured immediately after the sealing operation on the first day gradually decreased to zero percent by the third day of the storage period. The oxygen level remained at this point throughout the duration of storage for the chicken packages. Besides, level of oxygen in the packages without product continued to increase with the storage time, at moderate rate of 0.1% for 100%N2 and 0.3% for 30%CO2/70%N2 empty packages. More carbon dioxide gas was recorded for packages flushed with 30%CO2/70%N2. Results also revealed that visual analysis of one of the color indicators for example Ageless Eye, conformed to the data derived from the luminescence food-packaging indicator. This shows that packaging operation of the packaging line was considerably stable, and efficient with negligible exception. However, it was found that most of the food packaging indicators investigated in this research study exhibited considerable packaging challenges, such as, reaction with the content of the package (Impak); over sensitivity (Åbo Akademi and Impak); ease of handling problem (Åbo Akademi); and ease of activation problem (VTT indicators). In this study, the strengths and limitations of different indicators were analyzed. This study demonstrates the applicability of various indicators in MAP using chicken package application.
Resumo:
We determined the influence of fasting (FAST) and feeding (FED) on cholesteryl ester (CE) flow between high-density lipoproteins (HDL) and plasma apoB-lipoprotein and triacylglycerol (TG)-rich emulsions (EM) prepared with TG-fatty acids (FAs). TG-FAs of varying chain lengths and degrees of unsaturation were tested in the presence of a plasma fraction at d > 1.21 g/mL as the source of CE transfer protein. The transfer of CE from HDL to FED was greater than to FAST TG-rich acceptor lipoproteins, 18% and 14%, respectively. However, percent CE transfer from HDL to apoB-containing lipoproteins was similar for FED and FAST HDL. The CE transfer from HDL to EM depended on the EM TG-FA chain length. Furthermore, the chain length of the monounsaturated TG-containing EM showed a significant positive correlation of the CE transfer from HDL to EM (r = 0.81, P < 0.0001) and a negative correlation from EM to HDL (r = -041, P = 0.0088). Regarding the degree of EM TG-FAs unsaturation, among EMs containing C18, the CE transfer was lower from HDL to C18:2 compared to C18:1 and C18:3, 17.7%, 20.7%, and 20%, respectively. However, the CE transfer from EMs to HDL was higher to C18:2 than to C18:1 and C18:3, 83.7%, 51.2%, and 46.3%, respectively. Thus, the EM FA composition was found to be the rate-limiting factor regulating the transfer of CE from HDL. Consequently, the net transfer of CE between HDL and TG-rich particles depends on the specific arrangement of the TG acyl chains in the lipoprotein particle core.
Resumo:
Physical training influences the cells and mediators involved in skin wound healing. The objective of this study was to determine the changes induced by different intensities of physical training in mouse skin wound healing. Ninety male C57BL6 mice (8 weeks old, 20-25 g) were randomized into three physical training groups: moderate (70% VO2max), high (80% VO2max), and strenuous intensity (90% VO2max). Animals trained on a motorized treadmill for 8 weeks (Elesion: physical training until the day of excisional lesion, N = 10) or 10 weeks (Eeuthan: physical training for 2 additional weeks after excisional lesion until euthanasia, N = 10), five times/week, for 45 min. Control groups (CG) trained on the treadmill three times/week only for 5 min (N = 10). In the 8th week, mice were anesthetized, submitted to a dorsal full-thickness excisional wound of 1 cm², and sacrificed 14 days after wounding. Wound areas were measured 4, 7, and 14 days after wounding to evaluate contraction (d4, d7 and d14) and re-epithelialization (d14). Fragments of lesion and adjacent skin were processed and submitted to routine histological staining. Immunohistochemistry against alpha-smooth muscle actin (α-SMA) was performed. Moderate-intensity training (M) until lesion (M/Elesion) led to better wound closure 7 days after wounding compared to controls and M/Eeuthan (P < 0.05), and both moderate-intensity groups showed better re-epithelialization rates than controls (M/Elesion = 85.9%, M/Eeuthan = 96.4% and M/CG = 79.9%; P < 0.05). Sections of M/Elesion and M/Eeuthan groups stained with hematoxylin-eosin, Picrosirius red and α-SMA showed the most mature granulation tissues among all trained groups and controls. Thus, moderate-intensity physical training improves skin wound healing.
Resumo:
We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min-1·mg protein-1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.
Resumo:
Ca2+ pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca2+-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca2+-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca2+ (Ca0.5 = 780 nM) and a low sensitivity to vanadate (IC50 = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca2+/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca2+ and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca2+ accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca2+ and CaM, possibly via CaMKII, in a process that results in stimulation of Ca2+ pumping activity.
Resumo:
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.
Resumo:
The 6-minute walk test (6MWT) is a simple field test that is widely used in clinical settings to assess functional exercise capacity. However, studies with healthy subjects are scarce. We hypothesized that the 6MWT might be useful to assess exercise capacity in healthy subjects. The purpose of this study was to evaluate 6MWT intensity in middle-aged and older adults, as well as to develop a simple equation to predict oxygen uptake ( V ˙ O 2 ) from the 6-min walk distance (6MWD). Eighty-six participants, 40 men and 46 women, 40-74 years of age and with a mean body mass index of 28±6 kg/m2, performed the 6MWT according to American Thoracic Society guidelines. Physiological responses were evaluated during the 6MWT using a K4b2 Cosmed telemetry gas analyzer. On a different occasion, the subjects performed ramp protocol cardiopulmonary exercise testing (CPET) on a treadmill. Peak V ˙ O 2 in the 6MWT corresponded to 78±13% of the peak V ˙ O 2 during CPET, and the maximum heart rate corresponded to 80±23% of that obtained in CPET. Peak V ˙ O 2 in CPET was adequately predicted by the 6MWD by a linear regression equation: V ˙ O 2 mL·min-1·kg-1 = -2.863 + (0.0563×6MWDm) (R2=0.76). The 6MWT represents a moderate-to-high intensity activity in middle-aged and older adults and proved to be useful for predicting cardiorespiratory fitness in the present study. Our results suggest that the 6MWT may also be useful in asymptomatic individuals, and its use in walk-based conditioning programs should be encouraged.