941 resultados para injury data
Resumo:
Background: Efforts to prevent the development of overweight and obesity have increasingly focused early in the life course as we recognise that both metabolic and behavioural patterns are often established within the first few years of life. Randomised controlled trials (RCTs) of interventions are even more powerful when, with forethought, they are synthesised into an individual patient data (IPD) prospective meta-analysis (PMA). An IPD PMA is a unique research design where several trials are identified for inclusion in an analysis before any of the individual trial results become known and the data are provided for each randomised patient. This methodology minimises the publication and selection bias often associated with a retrospective meta-analysis by allowing hypotheses, analysis methods and selection criteria to be specified a priori. Methods/Design: The Early Prevention of Obesity in CHildren (EPOCH) Collaboration was formed in 2009. The main objective of the EPOCH Collaboration is to determine if early intervention for childhood obesity impacts on body mass index (BMI) z scores at age 18-24 months. Additional research questions will focus on whether early intervention has an impact on children’s dietary quality, TV viewing time, duration of breastfeeding and parenting styles. This protocol includes the hypotheses, inclusion criteria and outcome measures to be used in the IPD PMA. The sample size of the combined dataset at final outcome assessment (approximately 1800 infants) will allow greater precision when exploring differences in the effect of early intervention with respect to pre-specified participant- and intervention-level characteristics. Discussion: Finalisation of the data collection procedures and analysis plans will be complete by the end of 2010. Data collection and analysis will occur during 2011-2012 and results should be available by 2013. Trial registration number: ACTRN12610000789066
Resumo:
In this issue Burns et al. report an estimate of the economic loss to Auckland City Hospital from cases of healthcare-associated bloodstream infection. They show that patients with infection stay longer in hospital and this must impose an opportunity cost because beds are blocked. Harder to measure costs fall on patients, their families and non-acute health services. Patients face some risk of dying from the infection.
Resumo:
Advances in data mining have provided techniques for automatically discovering underlying knowledge and extracting useful information from large volumes of data. Data mining offers tools for quick discovery of relationships, patterns and knowledge in large complex databases. Application of data mining to manufacturing is relatively limited mainly because of complexity of manufacturing data. Growing self organizing map (GSOM) algorithm has been proven to be an efficient algorithm to analyze unsupervised DNA data. However, it produced unsatisfactory clustering when used on some large manufacturing data. In this paper a data mining methodology has been proposed using a GSOM tool which was developed using a modified GSOM algorithm. The proposed method is used to generate clusters for good and faulty products from a manufacturing dataset. The clustering quality (CQ) measure proposed in the paper is used to evaluate the performance of the cluster maps. The paper also proposed an automatic identification of variables to find the most probable causative factor(s) that discriminate between good and faulty product by quickly examining the historical manufacturing data. The proposed method offers the manufacturers to smoothen the production flow and improve the quality of the products. Simulation results on small and large manufacturing data show the effectiveness of the proposed method.
Resumo:
OBJECTIVES: To compare three different methods of falls reporting and examine the characteristics of the data missing from the hospital incident reporting system. DESIGN: Fourteen-month prospective observational study nested within a randomized controlled trial. SETTING: Rehabilitation, stroke, medical, surgical, and orthopedic wards in Perth and Brisbane, Australia. PARTICIPANTS: Fallers (n5153) who were part of a larger trial (1,206 participants, mean age 75.1 � 11.0). MEASUREMENTS: Three falls events reporting measures: participants’ self-report of fall events, fall events reported in participants’ case notes, and falls events reported through the hospital reporting systems. RESULTS: The three reporting systems identified 245 falls events in total. Participants’ case notes captured 226 (92.2%) falls events, hospital incident reporting systems captured 185 (75.5%) falls events, and participant selfreport captured 147 (60.2%) falls events. Falls events were significantly less likely to be recorded in hospital reporting systems when a participant sustained a subsequent fall, (P5.01) or when the fall occurred in the morning shift (P5.01) or afternoon shift (P5.01). CONCLUSION: Falls data missing from hospital incident report systems are not missing completely at random and therefore will introduce bias in some analyses if the factor investigated is related to whether the data ismissing.Multimodal approaches to collecting falls data are preferable to relying on a single source alone.
Resumo:
Being in paid employment is socially valued, and is linked to health, financial security and time use. Issues arising from a lack of occupational choice and control, and from diminished role partnerships are particularly problematic in the lives of people with an intellectual disability. Informal support networks are shown to influence work opportunities for people without disabilities, but their impact on the work experiences of people with disability has not been thoroughly explored. The experience of 'work' and preparation for work was explored with a group of four people with an intellectual disability (the participants) and the key members of their informal support networks (network members) in New South Wales, Australia. Network members and participants were interviewed and participant observations of work and other activities were undertaken. Data analysis included open, conceptual and thematic coding. Data analysis software assisted in managing the large datasets across multiple team members. The insight and actions of network members created and sustained the employment and support opportunities that effectively matched the needs and interests of the participants. Recommendations for future research are outlined.
Resumo:
Adolescent injury is a significant health concern and can be a result of the adolescents engagement in transport-related behaviours. There is however significant planning and formative research needed to inform prevention programme design. This presentation reports on the development and evaluation of a curriculum programme that was shown to be effective in reducing transport-related risks and injuries. Early adolescents report injuries resulting from a number of transport-related behaviours including those associated with riding a bicycle, a motorcycle, and as a passenger (survey of 209 Year 9 students). In focus groups, students (n=30) were able to describe the context of transport risks and injuries. Such information provided evidence of the need for an intervention and ecologically valid data on which to base programme design including insights into the language, culture and development of adolescents and their experiences with transport risks. Additional information about teaching practices and implementation issues were explored in interviews with 13 teachers. A psychological theory was selected to operationalise the design of the programmes that drew on such preparatory data. The programme, Skills for Preventing Injury in Youth was evaluated with 197 participating and 137 control students (13–14 year olds). Results showed a significant difference between the intervention and control groups from baseline to 6-month follow-up in a number of transport-related risk behaviours and transport-related injuries. The programme thus demonstrated potential in reduce early adolescents transport risk behaviours and associated harm. Discussion will involve the implications of the development research process in designing road safety interventions.
Resumo:
Australia’s Arts and Entertainment Sector underpins cultural and social innovation, improves the quality of community life, is essential to maintaining our cities as world class attractors of talent and investment, and helps create ‘Brand Australia’ in the global marketplace of ideas (QUT Creative Industries Faculty 2010). The sector makes a significant contribution to the Australian economy. So what is the size and nature of this contribution? The Creative Industries Faculty at Queensland University of Technology recently conducted an exercise to source and present statistics in order to produce a data picture of Australia’s Arts and Entertainment Sector. The exercise involved gathering the latest statistics on broadcasting, new media, performing arts, and music composition, distribution and publishing as well as Australia’s performance in world markets.
Resumo:
At QUT research data refers to information that is generated or collected to be used as primary sources in the production of original research results, and which would be required to validate or replicate research findings (Callan, De Vine, & Baker, 2010). Making publicly funded research data discoverable by the broader research community and the public is a key aim of the Australian National Data Service (ANDS). Queensland University of Technology (QUT) has been innovating in this space by undertaking mutually dependant technical and content (metadata) focused projects funded by ANDS. Research Data Librarians identified and described datasets generated from Category 1 funded research at QUT, by interviewing researchers, collecting metadata and fashioning metadata records for upload to the Australian Research Data commons (ARDC) and exposure through the Research Data Australia interface. In parallel to this project, a Research Data Management Service and Metadata hub project were being undertaken by QUT High Performance Computing & Research Support specialists. These projects will collectively store and aggregate QUT’s metadata and research data from multiple repositories and administration systems and contribute metadata directly by OAI-PMH compliant feed to RDA. The pioneering nature of the work has resulted in a collaborative project dynamic where good data management practices and the discoverability and sharing of research data were the shared drivers for all activity. Each project’s development and progress was dependent on feedback from the other. The metadata structure evolved in tandem with the development of the repository and the development of the repository interface responded to meet the needs of the data interview process. The project environment was one of bottom-up collaborative approaches to process and system development which matched top-down strategic alliances crossing organisational boundaries in order to provide the deliverables required by ANDS. This paper showcases the work undertaken at QUT, focusing on the Seeding the Commons project as a case study, and illustrates how the data management projects are interconnected. It describes the processes and systems being established to make QUT research data more visible and the nature of the collaborations between organisational areas required to achieve this. The paper concludes with the Seeding the Commons project outcomes and the contribution this project made to getting more research data ‘out there’.
Resumo:
The Internet presents a constantly evolving frontier for criminology and policing, especially in relation to online predators – paedophiles operating within the Internet for safer access to children, child pornography and networking opportunities with other online predators. The goals of this qualitative study are to undertake behavioural research – identify personality types and archetypes of online predators and compare and contrast them with behavioural profiles and other psychological research on offline paedophiles and sex offenders. It is also an endeavour to gather intelligence on the technological utilisation of online predators and conduct observational research on the social structures of online predator communities. These goals were achieved through the covert monitoring and logging of public activity within four Internet Relay Chat(rooms) (IRC) themed around child sexual abuse and which were located on the Undernet network. Five days of monitoring was conducted on these four chatrooms between Wednesday 1 to Sunday 5 April 2009; this raw data was collated and analysed. The analysis identified four personality types – the gentleman predator, the sadist, the businessman and the pretender – and eight archetypes consisting of the groomers, dealers, negotiators, roleplayers, networkers, chat requestors, posters and travellers. The characteristics and traits of these personality types and archetypes, which were extracted from the literature dealing with offline paedophiles and sex offenders, are detailed and contrasted against the online sexual predators identified within the chatrooms, revealing many similarities and interesting differences particularly with the businessman and pretender personality types. These personality types and archetypes were illustrated by selecting users who displayed the appropriate characteristics and tracking them through the four chatrooms, revealing intelligence data on the use of proxies servers – especially via the Tor software – and other security strategies such as Undernet’s host masking service. Name and age changes, which is used as a potential sexual grooming tactic was also revealed through the use of Analyst’s Notebook software and information on ISP information revealed the likelihood that many online predators were not using any safety mechanism and relying on the anonymity of the Internet. The activities of these online predators were analysed, especially in regards to child sexual grooming and the ‘posting’ of child pornography, which revealed a few of the methods in which online predators utilised new Internet technologies to sexually groom and abuse children – using technologies such as instant messengers, webcams and microphones – as well as store and disseminate illegal materials on image sharing websites and peer-to-peer software such as Gigatribe. Analysis of the social structures of the chatrooms was also carried out and the community functions and characteristics of each chatroom explored. The findings of this research have indicated several opportunities for further research. As a result of this research, recommendations are given on policy, prevention and response strategies with regards to online predators.
Resumo:
Decentralised sensor networks typically consist of multiple processing nodes supporting one or more sensors. These nodes are interconnected via wireless communication. Practical applications of Decentralised Data Fusion have generally been restricted to using Gaussian based approaches such as the Kalman or Information Filter This paper proposes the use of Parzen window estimates as an alternate representation to perform Decentralised Data Fusion. It is required that the common information between two nodes be removed from any received estimates before local data fusion may occur Otherwise, estimates may become overconfident due to data incest. A closed form approximation to the division of two estimates is described to enable conservative assimilation of incoming information to a node in a decentralised data fusion network. A simple example of tracking a moving particle with Parzen density estimates is shown to demonstrate how this algorithm allows conservative assimilation of network information.
Resumo:
The aim of this paper is to demonstrate the validity of using Gaussian mixture models (GMM) for representing probabilistic distributions in a decentralised data fusion (DDF) framework. GMMs are a powerful and compact stochastic representation allowing efficient communication of feature properties in large scale decentralised sensor networks. It will be shown that GMMs provide a basis for analytical solutions to the update and prediction operations for general Bayesian filtering. Furthermore, a variant on the Covariance Intersect algorithm for Gaussian mixtures will be presented ensuring a conservative update for the fusion of correlated information between two nodes in the network. In addition, purely visual sensory data will be used to show that decentralised data fusion and tracking of non-Gaussian states observed by multiple autonomous vehicles is feasible.
Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data
Resumo:
In this paper, we apply the incremental EM method to Bayesian Network Classifiers to learn and interpret hyperspectral sensor data in robotic planetary missions. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. Many spacecraft carry spectroscopic equipment as wavelengths outside the visible light in the electromagnetic spectrum give much greater information about an object. The algorithm used is an extension to the standard Expectation Maximisation (EM). The incremental method allows us to learn and interpret the data as they become available. Two Bayesian network classifiers were tested: the Naive Bayes, and the Tree-Augmented-Naive Bayes structures. Our preliminary experiments show that incremental learning with unlabelled data can improve the accuracy of the classifier.
Resumo:
Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.
Resumo:
QUT Library and the High Performance Computing and Research Support (HPC) Team have been collaborating on developing and delivering a range of research support services, including those designed to assist researchers to manage their data. QUT’s Management of Research Data policy has been available since 2010 and is complemented by the Data Management Guidelines and Checklist. QUT has partnered with the Australian Research Data Service (ANDS) on a number of projects including Seeding the Commons, Metadata Hub (with Griffith University) and the Data Capture program. The HPC Team has also been developing the QUT Research Data Repository based on the Architecta Mediaflux system and have run several pilots with faculties. Library and HPC staff have been trained in the principles of research data management and are providing a range of research data management seminars and workshops for researchers and HDR students.
Resumo:
The Queensland Department of Main Roads uses Weigh-in-Motion (WiM) devices to covertly monitor (at highway speed) axle mass, axle configurations and speed of heavy vehicles on the road network. Such data is critical for the planning and design of the road network. Some of the data appears excessively variable. The current work considers the nature, magnitude and possible causes of WiM data variability. Over fifty possible causes of variation in WiM data have been identified in the literature. Data exploration has highlighted five basic types of variability specifically: ----- • cycling, both diurnal and annual;----- • consistent but unreasonable data;----- • data jumps;----- • variations between data from opposite sides of the one road; and ----- • non-systematic variations.----- This work is part of wider research into procedures to eliminate or mitigate the influence of WiM data variability.