971 resultados para infrared thermal imaging
Resumo:
Thermoplastic starch (TPS) was modified with ascorbic acid and citric acid by melt processing of native starch with glycerol as plasticizer in an intensive batch mixer at 160 degrees C. It was found that the molar mass decreases with acid content and processing time causing the reduction in melting temperature (T(m)). As observed by the results of X-ray diffraction and DSC measurements, crystallinity was not changed by the reaction with organic acids. T(m) depression with falling molar mass was interpreted on the basis of the effect of concentration of end-chain units, which act as diluents. FTIR did not show any appreciable change in starch chemical compositions, leading to the conclusion that the main changes observed were produced by the variation in molar mass of the material. We demonstrated that it is possible to decrease melt viscosity without the need for more plasticizer thus avoiding side-effects such as an increase in water affinity or relevant changes in the dynamic mechanical properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A round robin program zoos conducted to assess the ability of three different X-radiographic systems for imaging internal fatigue cracks in riveted lap joints of composite glass reinforced fiber/metal laminate. From an engineering perspective, conventional film radiography and direct radiography have produced the best results, identifying and characterizing in detail internal damage on metallic faying surfaces of fastened glass reinforced fiber/metal laminate joints. On the other hand, computed radiographic images presented large projected geometric distortions and feature shifts due to the angular incident radiation beam, disclosing only partial internal cracking patterns.
Resumo:
Ternary compatible blends of chitosan, poly(vinyl alcohol), and poly(lactic acid) were prepared by an oil-in-water (O/W) emulsion process. Solutions of chitosan in aqueous acetic acid, poly(vinyl alcohol) (PVA) in water, and poly(lactic acid) (PLA) in chloroform were blended with a high shear mixer. PVA was used as an emulsifier to stabilize the emulsion and to reduce the interfacial tension between the solid polymers in the blends-produced. It proved to work very well because the emulsions were stable for periods of days or weeks and compatible blends were obtained When PVA was added. This effect was attributed to a synergistic effect of PVA and chitosan because the binary blends PVA/PLA and chitosan/PLA were completely incompatible; The blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA), stress strain tests, and Fourier transform infrared spectroscopy (FTIR). The results indicated that despite the fact that the system contained distinct phases some degree of molecular miscibility occurred when the three components were present in the blend.
Resumo:
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.
Resumo:
High velocity oxi-fuel (HVOF) thermal spray process has been used in order to deposit a new alloy known as multicomponent white cast iron. The coatings were characterized in terms of macrostructure, phase composition, porosity and hardness. Coating characteristics and properties were found to be dependent on the particles size range, spray distance, gases flow rate and oxygen to propane ratio. For set of parameters utilized in this job a narrow particle size range between 20 and 45 gm with a spray distance of 200 mm and oxygen to propane ratio of 4.6 are the preferred coating parameters. Coating porosity of 0.9% and hardness of 766 HV were obtained under these conditions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Compliant mechanisms can achieve a specified motion as a mechanism without relying on the use of joints and pins. They have broad application in precision mechanical devices and Micro-Electro Mechanical Systems (MEMS) but may lose accuracy and produce undesirable displacements when subjected to temperature changes. These undesirable effects can be reduced by using sensors in combination with control techniques and/or by applying special design techniques to reduce such undesirable effects at the design stage, a process generally termed ""design for precision"". This paper describes a design for precision method based on a topology optimization method (TOM) for compliant mechanisms that includes thermal compensation features. The optimization problem emphasizes actuator accuracy and it is formulated to yield optimal compliant mechanism configurations that maximize the desired output displacement when a force is applied, while minimizing undesirable thermal effects. To demonstrate the effectiveness of the method, two-dimensional compliant mechanisms are designed considering thermal compensation, and their performance is compared with compliant mechanisms designs that do not consider thermal compensation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study presents a decision-making method for maintenance policy selection of power plants equipment. The method is based on risk analysis concepts. The method first step consists in identifying critical equipment both for power plant operational performance and availability based on risk concepts. The second step involves the proposal of a potential maintenance policy that could be applied to critical equipment in order to increase its availability. The costs associated with each potential maintenance policy must be estimated, including the maintenance costs and the cost of failure that measures the critical equipment failure consequences for the power plant operation. Once the failure probabilities and the costs of failures are estimated, a decision-making procedure is applied to select the best maintenance policy. The decision criterion is to minimize the equipment cost of failure, considering the costs and likelihood of occurrence of failure scenarios. The method is applied to the analysis of a lubrication oil system used in gas turbines journal bearings. The turbine has more than 150 MW nominal output, installed in an open cycle thermoelectric power plant. A design modification with the installation of a redundant oil pump is proposed for lubricating oil system availability improvement. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The combined-cycle gas and steam turbine power plant presents three main pieces of equipment: gas turbines, steam turbines and heat recovery steam generator (HRSG). In case of HRSG failure the steam cycle is shut down, reducing the power plant output. Considering that the technology for design, construction and operation of high capacity HRSGs is quite recent its availability should be carefully evaluated in order to foresee the performance of the power plant. This study presents a method for reliability and availability evaluation of HRSGs installed in combined-cycle power plant. The method`s first step consists in the elaboration of the steam generator functional tree and development of failure mode and effects analysis. The next step involves a reliability and availability analysis based on the time to failure and time to repair data recorded during the steam generator operation. The third step, aiming at availability improvement, recommends the fault-tree analysis development to identify components the failure (or combination of failures) of which can cause the HRSG shutdown. Those components maintenance policy can be improved through the use of reliability centered maintenance (RCM) concepts. The method is applied on the analysis of two HRSGs installed in a 500 MW combined-cycle power plant. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, poly(vinyl butyral) (PVB) film originated from the mechanical separation of windshields was tested as all impact modifier of Polyamide-6 (PA-6). The changes undergone by PVB film during the recycling process and the blend manufacturing were evaluated by thermal analyses, infrared spectroscopy and loss oil ignition. Blends of PA-6/original PVB film and PA-6/recovered PVB film were obtained in concentrations ranging from 90/10 to 60/40. The mechanical properties of the blends were investigated and explained in light of the blends morphologies, which in turns were correlated to the changes undergone by the PVB film during the recycling process. The original film presented a plasticizer content of 33 wt.%, which decreased to as low as 20 wt.%, after the recycling and blend preparation processes. The PA-6/PVB film blends presented lower values of tensile strength and Young`s modulus than Polyamide-6, but all blends presented a dramatic increase in their toughness, with a special feature for the 40 wt.%(, blend, which resulted in a super toughened material (impact strength exceeding 500 J/m). Similar results were obtained with recovered PVB film and super tough blends were also obtained. The use of recovered PVB resulted in a smaller improvement of the impact strength due to the loss of plasticizer undergone during the recycling process. The morphological observations showed that if the interparticle distance is smaller than around 0.2 mu m (critical value), the notched Izod impact strength values increase considerably and the fracture surface of blends exhibit characteristics of tough failure. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The effect of ultraviolet radiation on the properties of poly(3-hydroxybutyrate) (PHB) was studied. The PHB investigated is produced from microbial fermentation using saccharose from sugarcane as the carbon source to the bacteria. The material was exposed to artificial UV-A radiation for 3, 6, 9 and 12 weeks. The photodegradation effect was followed by changes of molecular weight, of chemical and crystalline structures, of thermal, morphological, optical and mechanical properties, as well as of biodegradability. The experimental results showed that PHB undergoes both chain scission and cross-linking reactions, but the continuous decrease in its mechanical properties and the low amount of gel content upon UV exposure indicated that the scission reactions were predominant. Molar mass, melting temperature and crystallinity measurements for two layers of PHB samples with different depth suggested that the material has a strong degradation profile, which was attributed to its dark colour that restricted the transmission of light. Previous photodegradation initially delayed PHB biodegradability, due to the superficial increase in crystallinity seen with UV exposure. The possible reactions taking place during PHB photodegradation were presented and discussed in terms of the infrared and nuclear magnetic resonance spectra. A reference peak (internal standard) in the infrared spectra was proposed for PHB photodegradation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Coatings based on NiCrAlC intermetallic based alloy were applied on AISI 316L stainless steel substrates using a high velocity oxygen fuel torch. The influence of the spray parameters on friction and abrasive wear resistance were investigated using an instrumented rubber wheel abrasion test, able to measure the friction forces. The corrosion behaviour of the coatings were studied with electrochemical techniques and compared with the corrosion resistance of the substrate material. Specimens prepared using lower O(2)/C(3)H(8) ratios showed smaller porosity values. The abrasion wear rate of the NiCrAlC coatings was much smaller than that described in the literature for bulk as cast materials with similar composition and one order of magnitude higher than bulk cast and heat treated (aged) NiCrAlC alloy. All coatings showed higher corrosion resistance than the AISI 316L substrate in HCl (5%) aqueous solution at 40 degrees C.
Resumo:
Polyurethane composites reinforced with curaua fiber at 5, 10 and 20% mass/mass proportions were prepared by using the conventional melt-mixing method. The influence of curaua fibers on the thermal behavior and polymer cohesiveness in polyurethane matrix was evaluated by dynamic mechanical thermal analysis (DMTA) and by differential scanning calorimetry (DSC). This specific interaction between the fibers and the hard segment domain was influenced by the behavior of the storage modulus E` and the loss modulus EaEuro(3) curves. The polyurethane PU80 is much stiffer and resistant than the other composites at low temperatures up to 70A degrees C. All samples were thermoplastic and presented a rubbery plateau over a wide temperature range above the glass transition temperature and a thermoplastic flow around 170A degrees C.
Resumo:
P>Coconut water is an isotonic beverage naturally obtained from the green coconut. After extracted and exposed to air, it is rapidly degraded by enzymes peroxidase (POD) and polyphenoloxidase (PPO). To study the effect of thermal processing on coconut water enzymatic activity, batch process was conducted at three different temperatures, and at eight holding times. The residual activity values suggest the presence of two isoenzymes with different thermal resistances, at least, and a two-component first-order model was considered to model the enzymatic inactivation parameters. The decimal reduction time at 86.9 degrees C (D(86.9 degrees C)) determined were 6.0 s and 11.3 min for PPO heat labile and heat resistant fractions, respectively, with average z-value = 5.6 degrees C (temperature difference required for tenfold change in D). For POD, D(86.9 degrees C) = 8.6 s (z = 3.4 degrees C) for the heat labile fraction was obtained and D(86.9 degrees C) = 26.3 min (z = 6.7 degrees C) for the heat resistant one.
Resumo:
The classical approach for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Deconvolution methods have been proposed to enhance acoustic images and have produced significant improvements. Other proposals involve covariance fitting techniques, which avoid deconvolution altogether. However, in their traditional presentation, these enhanced reconstruction methods have very high computational costs, mostly because they have no means of efficiently transforming back and forth between a hypothetical image and the measured data. In this paper, we propose the Kronecker Array Transform ( KAT), a fast separable transform for array imaging applications. Under the assumption of a separable array, it enables the acceleration of imaging techniques by several orders of magnitude with respect to the fastest previously available methods, and enables the use of state-of-the-art regularized least-squares solvers. Using the KAT, one can reconstruct images with higher resolutions than was previously possible and use more accurate reconstruction techniques, opening new and exciting possibilities for acoustic imaging.
Resumo:
In Part I [""Fast Transforms for Acoustic Imaging-Part I: Theory,"" IEEE TRANSACTIONS ON IMAGE PROCESSING], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT.