988 resultados para incoherent imaging system
Resumo:
This thesis deals with the challenging problem of designing systems able to perceive objects in underwater environments. In the last few decades research activities in robotics have advanced the state of art regarding intervention capabilities of autonomous systems. State of art in fields such as localization and navigation, real time perception and cognition, safe action and manipulation capabilities, applied to ground environments (both indoor and outdoor) has now reached such a readiness level that it allows high level autonomous operations. On the opposite side, the underwater environment remains a very difficult one for autonomous robots. Water influences the mechanical and electrical design of systems, interferes with sensors by limiting their capabilities, heavily impacts on data transmissions, and generally requires systems with low power consumption in order to enable reasonable mission duration. Interest in underwater applications is driven by needs of exploring and intervening in environments in which human capabilities are very limited. Nowadays, most underwater field operations are carried out by manned or remotely operated vehicles, deployed for explorations and limited intervention missions. Manned vehicles, directly on-board controlled, expose human operators to risks related to the stay in field of the mission, within a hostile environment. Remotely Operated Vehicles (ROV) currently represent the most advanced technology for underwater intervention services available on the market. These vehicles can be remotely operated for long time but they need support from an oceanographic vessel with multiple teams of highly specialized pilots. Vehicles equipped with multiple state-of-art sensors and capable to autonomously plan missions have been deployed in the last ten years and exploited as observers for underwater fauna, seabed, ship wrecks, and so on. On the other hand, underwater operations like object recovery and equipment maintenance are still challenging tasks to be conducted without human supervision since they require object perception and localization with much higher accuracy and robustness, to a degree seldom available in Autonomous Underwater Vehicles (AUV). This thesis reports the study, from design to deployment and evaluation, of a general purpose and configurable platform dedicated to stereo-vision perception in underwater environments. Several aspects related to the peculiar environment characteristics have been taken into account during all stages of system design and evaluation: depth of operation and light conditions, together with water turbidity and external weather, heavily impact on perception capabilities. The vision platform proposed in this work is a modular system comprising off-the-shelf components for both the imaging sensors and the computational unit, linked by a high performance ethernet network bus. The adopted design philosophy aims at achieving high flexibility in terms of feasible perception applications, that should not be as limited as in case of a special-purpose and dedicated hardware. Flexibility is required by the variability of underwater environments, with water conditions ranging from clear to turbid, light backscattering varying with daylight and depth, strong color distortion, and other environmental factors. Furthermore, the proposed modular design ensures an easier maintenance and update of the system over time. Performance of the proposed system, in terms of perception capabilities, has been evaluated in several underwater contexts taking advantage of the opportunity offered by the MARIS national project. Design issues like energy power consumption, heat dissipation and network capabilities have been evaluated in different scenarios. Finally, real-world experiments, conducted in multiple and variable underwater contexts, including open sea waters, have led to the collection of several datasets that have been publicly released to the scientific community. The vision system has been integrated in a state of the art AUV equipped with a robotic arm and gripper, and has been exploited in the robot control loop to successfully perform underwater grasping operations.
Resumo:
Objective: To introduce a new technique for co-registration of Magnetoencephalography (MEG) with magnetic resonance imaging (MRI). We compare the accuracy of a new bite-bar with fixed fiducials to a previous technique whereby fiducial coils were attached proximal to landmarks on the skull. Methods: A bite-bar with fixed fiducial coils is used to determine the position of the head in the MEG co-ordinate system. Co-registration is performed by a surface-matching technique. The advantage of fixing the coils is that the co-ordinate system is not based upon arbitrary and operator dependent fiducial points that are attached to landmarks (e.g. nasion and the preauricular points), but rather on those that are permanently fixed in relation to the skull. Results: As a consequence of minimizing coil movement during digitization, errors in localization of the coils are significantly reduced, as shown by a randomization test. Displacement of the bite-bar caused by removal and repositioning between MEG recordings is minimal (∼0.5 mm), and dipole localization accuracy of a somatosensory mapping paradigm shows a repeatability of ∼5 mm. The overall accuracy of the new procedure is greatly improved compared to the previous technique. Conclusions: The test-retest reliability and accuracy of target localization with the new design is superior to techniques that incorporate anatomical-based fiducial points or coils placed on the circumference of the head. © 2003 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
This review will discuss the use of manual grading scales, digital photography, and automated image analysis in the quantification of fundus changes caused by age-related macular disease. Digital imaging permits processing of images for enhancement, comparison, and feature quantification, and these techniques have been investigated for automated drusen analysis. The accuracy of automated analysis systems has been enhanced by the incorporation of interactive elements, such that the user is able to adjust the sensitivity of the system, or manually add and remove pixels. These methods capitalize on both computer and human image feature recognition and the advantage of computer-based methodologies for quantification. The histogram-based adaptive local thresholding system is able to extract useful information from the image without being affected by the presence of other structures. More recent developments involve compensation for fundus background reflectance, which has most recently been combined with the Otsu method of global thresholding. This method is reported to provide results comparable with manual stereo viewing. Developments in this area are likely to encourage wider use of automated techniques. This will make the grading of photographs easier and cheaper for clinicians and researchers. © 2007 Elsevier Inc. All rights reserved.
Resumo:
Recent functional magnetic resonance imaging (fMRI) investigations of the interaction between cognition and reward processing have found that the lateral prefrontal cortex (PFC) areas are preferentially activated to both increasing cognitive demand and reward level. Conversely, ventromedial PFC (VMPFC) areas show decreased activation to the same conditions, indicating a possible reciprocal relationship between cognitive and emotional processing regions. We report an fMRI study of a rewarded working memory task, in which we further explore how the relationship between reward and cognitive processing is mediated. We not only assess the integrity of reciprocal neural connections between the lateral PFC and VMPFC brain regions in different experimental contexts but also test whether additional cortical and subcortical regions influence this relationship. Psychophysiological interaction analyses were used as a measure of functional connectivity in order to characterize the influence of both cognitive and motivational variables on connectivity between the lateral PFC and the VMPFC. Psychophysiological interactions revealed negative functional connectivity between the lateral PFC and the VMPFC in the context of high memory load, and high memory load in tandem with a highly motivating context, but not in the context of reward alone. Physiophysiological interactions further indicated that the dorsal anterior cingulate and the caudate nucleus modulate this pathway. These findings provide evidence for a dynamic interplay between lateral PFC and VMPFC regions and are consistent with an emotional gating role for the VMPFC during cognitively demanding tasks. Our findings also support neuropsychological theories of mood disorders, which have long emphasized a dysfunctional relationship between emotion/motivational and cognitive processes in depression.
Resumo:
The aim of this study was to prepare gas-filled lipid-coated microbubbles as potential MRI contrast agents for imaging of fluid pressure. Air-filled microbubbles were produced with phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in the presence or absence of cholesterol and/or polyethylene-glycol distearate (PEG-distearate). Microbubbles were also prepared containing a fluorinated phospholipid, perfluoroalkylated glycerol-phosphatidylcholine, F-GPC shells encompassing perfluorohexane-saturated nitrogen gas. These microbubbles were evaluated in terms of physico-chemical characteristics such as size and stability. In parallel to these studies, DSPC microbubbles were also formulated containing nitrogen (N2) gas and compared to air-filled microbubbles. By preventing advection, signal drifts were used to assess their stability. DSPC microbubbles were found to have a drift of 20% signal change per bar of applied pressure in contrast to the F-GPC microbubbles which are considerably more stable with a lower drift of 5% signal change per bar of applied pressure. By increasing the pressure of the system and monitoring the MR signal intensity, the point at which the majority of the microbubbles have been damaged was determined. For the DSPC microbubbles this occurs at 1.3 bar whilst the F-GPC microbubbles withstand pressures up to 2.6 bar. For the comparison between air-filled and N2-filled microbubbles, the MRI sensitivity is assessed by cycling the pressure of the system and monitoring the MR signal intensity. It was found that the sensitivity exhibited by the N2-filled microbubbles remained constant, whilst the air-filled microbubbles demonstrated a continuous drop in sensitivity due to continuous bubble damage.
Resumo:
We have simulated the performance of various apertures used in Coded Aperture Imaging - optically. Coded pictures of extended and continuous-tone planar objects from the Annulus, Twin Annulus, Fresnel Zone Plate and the Uniformly Redundant Array have been decoded using a noncoherent correlation process. We have compared the tomographic capabilities of the Twin Annulus with the Uniformly Redundant Arrays based on quadratic residues and m-sequences. We discuss the ways of reducing the 'd. c.' background of the various apertures used. The non-ideal System-Point-Spread-Function inherent in a noncoherent optical correlation process produces artifacts in the reconstruction. Artifacts are also introduced as a result of unwanted cross-correlation terms from out-of-focus planes. We find that the URN based on m-sequences exhibits good spatial resolution and out-of-focus behaviour when imaging extended objects.
Resumo:
This thesis is an exploration of the organisation and functioning of the human visual system using the non-invasive functional imaging modality magnetoencephalography (MEG). Chapters one and two provide an introduction to the ‘human visual system and magnetoencephalographic methodologies. These chapters subsequently describe the methods by which MEG can be used to measure neuronal activity from the visual cortex. Chapter three describes the development and implementation of novel analytical tools; including beamforming based analyses, spectrographic movies and an optimisation of group imaging methods. Chapter four focuses on the use of established and contemporary analytical tools in the investigation of visual function. This is initiated with an investigation of visually evoked and induced responses; covering visual evoked potentials (VEPs) and event related synchronisation/desynchronisation (ERS/ERD). Chapter five describes the employment of novel methods in the investigation of cortical contrast response and demonstrates distinct contrast response functions in striate and extra-striate regions of visual cortex. Chapter six use synthetic aperture magnetometry (SAM) to investigate the phenomena of visual cortical gamma oscillations in response to various visual stimuli; concluding that pattern is central to its generation and that it increases in amplitude linearly as a function of stimulus contrast, consistent with results from invasive electrode studies in the macaque monkey. Chapter seven describes the use of driven visual stimuli and tuned SAM methods in a pilot study of retinotopic mapping using MEG; finding that activity in the primary visual cortex can be distinguished in four quadrants and two eccentricities of the visual field. Chapter eight is a novel implementation of the SAM beamforming method in the investigation of a subject with migraine visual aura; the method reveals desynchronisation of the alpha and gamma frequency bands in occipital and temporal regions contralateral to observed visual abnormalities. The final chapter is a summary of main conclusions and suggested further work.