952 resultados para imidazole propyl gel
Resumo:
We studied the pattern of BCR involvement in 52 patients with chronic myeloid leukemia by Southern blotting. Of 33 Philadelphia (Ph)-positive patients, 30 had evidence of M-BCR rearrangement, two cases were difficult to interpret, and one clearly lacked evidence of M-BCR rearrangement. Of 19 Ph-negative patients, nine showed M-BCR rearrangement, nine showed no rearrangement, and one result was uncertain. We selected for more detailed study eight patients (three Ph-positive and five Ph-negative). Two of the Ph-positive patients, whose Southern blots were difficult to interpret, had rearranged bands when the BCR gene was studied by pulsed field gel electrophoresis (PFGE). Results of PFGE studies and in situ hybridization to metaphase chromosomes in the third Ph-positive patient, whose DNA clearly lacked M-BCR rearrangement on Southern analysis, were consistent with a breakpoint on chromosome 22 located 3' of all known exons of the BCR gene. However, mRNA studied with the polymerase chain reaction showed evidence of a classical b2-a2 linkage. The findings in this patient may be explained by an unusual genomic breakpoint downstream of the BCR gene associated with long range splicing that excluded all of the 3' BCR exons. Of the five patients with Ph-negative M-BCR non-rearranged CML studied by PFGE for BCR gene rearrangement, none had evidence of rearranged bands. We conclude that PFGE is a valuable adjunct to standard molecular techniques for the study of atypical cases of CML. Occasional patients with Ph-positive CML have breakpoints outside M-BCR. The BCR gene is probably not involved in patients with Ph-negative, M-BCR non-rearranged CML.
Resumo:
Atomic force microscopy, which is normally used for DNA imaging to gain qualitative results, can also be used for quantitative DNA research, at a single-molecular level. Here, we evaluate the performance of AFM imaging specifically for quantifying supercoiled and relaxed plasmid DNA fractions within a mixture, and compare the results with the bulk material analysis method, gel electrophoresis. The advantages and shortcomings of both methods are discussed in detail. Gel electrophoresis is a quick and well-established quantification method. However, it requires a large amount of DNA, and needs to be carefully calibrated for even slightly different experimental conditions for accurate quantification. AFM imaging is accurate, in that single DNA molecules in different conformations can be seen and counted. When used carefully with necessary correction, both methods provide consistent results. Thus, AFM imaging can be used for DNA quantification, as an alternative to gel electrophoresis.
Resumo:
Adsorption-based processes are widely used in the treatment of dilute metal-bearing wastewaters. The development of versatile, low-cost adsorbents is the subject of continuing interest. This paper examines the preparation, characterization and performance of a micro-scale composite adsorbent composed of silica gel (15.9 w/w%), calcium silicate hydrate gel (8.2 w/w%) and calcite (75.9 w/w%), produced by the accelerated carbonation of tricalcium silicate (C(3)S, Ca(3)SiO(5)). The Ca/Si ratio of calcium silicate hydrate gel (C-S-H) was determined at 0.12 (DTA/TG), 0.17 ((29)Si solid-state MAS/NMR) and 0.18 (SEM/EDS). The metals-retention capacity for selected Cu(II), Pb(II), Zn(II) and Cr(III) was determined by batch and column sorption experiments utilizing nitrate solutions. The effects of metal ion concentration, pH and contact time on binding ability was investigated by kinetic and equilibrium adsorption isotherm studies. The adsorption capacity for Pb(II), Cr(III), Zn(II) and Cu(II) was found to be 94.4 mg/g, 83.0 mg/g, 52.1 mg/g and 31.4 mg/g, respectively. It is concluded that the composite adsorbent has considerable potential for the treatment of industrial wastewater containing heavy metals.
Resumo:
Aminolevulinic acid (ALA) stability within topical formulations intended for photodynamic therapy (PDT) is poor due to dimerisation to pyrazine-2,5-dipropionic acid (PY). Most strategies to improve stability use low pH vehicles, which can cause cutaneous irritancy. To overcome this problem, a novel approach is investigated that uses a non-aqueous vehicle to retard proton-induced charge separation across the 4-carbonyl group on ALA and lessen nucleophilic attack that leads to condensation dimerisation. Bioadhesive anhydrous vehicles based on methylvinylether-maleic anhydride copolymer patches and poly(ethyleneglycol) or glycerol thickened poly(acrylic acid) gels were formulated. ALA stability fell below pharmaceutically acceptable levels after 6 months, with bioadhesive patches stored at 5°C demonstrating the best stability by maintaining 86.2% of their original loading. Glycerol-based gels maintained 40.2% in similar conditions. However, ALA loss did not correspond to expected increases in PY, indicating the presence of another degradative process that prevented dimerisation. Nuclear magnetic resonance (NMR) analysis was inconclusive in respect of the mechanism observed in the patch system, but showed clearly that an esterification reaction involving ALA and both glycerol and poly(ethyleneglycol) was occurring. This was especially marked in the glycerol gels, where only 2.21% of the total expected PY was detected after 204 days at 5°C. Non-specific esterase hydrolysis demonstrated that ALA was recoverable from the gel systems, further supporting esterified binding within the gel matrices. It is conceivable that skin esterases could duplicate this finding upon topical application of the gel and convert these derivatives back to ALA in situ, provided skin penetration is not affected adversely.
Resumo:
A polymeric metal-organic gel is described, which acts as a template in the preparation of macroporous polymethylmethacrylate, and can be easily removed post polymerisation.
Resumo:
Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c(3) reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c(3) as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c(3) required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c(3). The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and-for sufficiently high values of c(3)-there is a reversible polymer-gel transformation at a density-dependent floor temperature. (C) 2002 American Institute of Physics.
Resumo:
The first definitive high-resolution single-crystal X-ray structure for the coordination of the 1-methylimidazole (Meimid) ligand to UO2(Ac)2 (Ac = CH3CO2) is reported. The crystal structure evidence is confirmed by IR, Raman, and UV-vis spectroscopic data. Direct participation of the nitrogen atom of the Meimid ligand in binding to the uranium center is confirmed. Structural analysis at the DFT (B3LYP) level of theory showed a conformational difference of the Meimid ligand in the free gas-phase complex versus the solid state due to small energetic differences and crystal packing effects. Energetic analysis at the MP2 level in the gas phase supported stronger Meimid binding over H2O binding to both UO2(Ac)2 and UO2(NO3)2. In addition, self-consistent reaction field COSMO calculations were used to assess the aqueous phase energetics of combination and displacement reactions involving H2O and Meimid ligands to UO2R2 (R = Ac, NO3). For both UO2(NO3)2 and UO2(Ac)2, the displacement of H2O by Meimid was predicted to be energetically favorable, consistent with experimental results that suggest Meimid may bind uranyl at physiological pH. Also, log(Knitrate/KAc) calculations supported experimental evidence that the binding stoichiometry of the Meimid ligand is dependent upon the nature of the reactant uranyl complex. These results clearly demonstrate that imidazole binds to uranyl and suggest that binding of histidine residues to uranyl could occur under normal biological conditions.
Resumo:
Size-exclusion or gel filtration chromatography is one of the most popular methods for determining the sizes of proteins. Proteins in solution, or other macromolecules, are applied to a column with a defined support medium. The behavior of the protein depends on its size and that of the pores in the medium. If the protein is small relative to the pore size, it will partition into the medium and emerge from the column after larger proteins. Besides a protein's size, this technique can also be used for protein purification, analysis of purity, and study of interactions between proteins. In this unit protocols are provided for size-exclusion high-performance liquid chromatography (SE-HPLC) and for conventional gel filtration, including calibration of columns (in terms of the Stokes radius) using protein standards.