971 resultados para hydraulic power take-off
Resumo:
Two new species of Pseudocreadium are described from off northern Tasmania, P maturini sp. nov. from Meuschenia freycineti and P aubreyi sp. nov. from Acanthaluteres vittiger. They differ from the only other recognised species in the genus by the number of ovarian lobes and by size, and they differ from each other by size, shape, caecal length, forebody length, pre-oral lobe size, uterine position, excretory vesicle length and oral sucker shape. Lobatocreadium exiguum is redescribed from Sufflamen bursa, off Moorea, French Polynesia and Abalistes stellatus, Swain Reefs, Great Barrier Reef, Queensland. Records and measurements are given for Hypocreadium cavum from Sufflamen fraenatus and Lepotrema clavatum from Melichthys vidua, both off Heron Island, Great Barrier Reef, Queensland.
Resumo:
The ability to generate peak power is central for performance in many sports. Currently two distinct resistance training methods are used to develop peak power, the heavy weight/slow velocity and light weight/fast velocity regimes. When using the light weight/fast velocity power training method it was proposed that peak power would be greater in a shoulder throw exercise compared with a normal shoulder press. Nine males performed three lifts in the shoulder press and shoulder throw at 30% and 40% of their one repetition maximum (1RM). These lifts were performed identically, except for the release of the bar in the throw condition. A potentiometer attached to the bar measured displacement and duration of the lifts. The time of bar release in the shoulder throw was determined with a pressure switch. ANOVA was used to examine statistically significant differences where the level of acceptance was set at p
Resumo:
Purpose: The aims of this study are two-fold: first, to analyze intraindividual allometric development of aerobic power of 73 boys followed at annual intervals from 8 to 16 yr, and second, to relate scaled aerobic power with level of habitual physical activity and biological maturity status. Methods: Peak (V) over dot O-2 (treadmill), height, and body mass were measured. Biological maturity was based on age at peak height velocity (PHV) and level of physical activity was based on five assessments between 11 and 15 yr and at 17 yr. Interindividual and intraindividual allometric coefficients were calculated. Multilevel modeling was applied to verify if maturity status and activity explain a significant proportion of peak (V) over dot O-2 after controlling for other explanatory characteristics. Results: At most age levels, interindividual allometry coefficients for body mass exceed k = 0.750. Intraindividual coefficients of peak (V) over dot O-2 by body mass vary widely and range from k' = 0,555 to k' = 1,178. Late maturing boys have smaller k' coefficients than early maturing boys. Conclusion: Peak (V) over dot O-2 is largely explained by body mass, but activity level and its interaction with maturity status contribute independently to peak (V) over dot O-2 even after adjusting for body mass.
Resumo:
In Ruddock and Others v Vadarlis and Others the Federal Court had to balance two fundamental but competing rights, the right of the state to secure its frontiers and the rights of individuals not to be subjected to unlawful detention - Court's task was hampered by intense public debate over the illegal refugee crisis - in the wake of 11 September 2001 and the Tampa crisis, the Federal Government has rushed through several amendments to migration laws and border protection legislation.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
Crushing and grinding are the most energy intensive part of the mineral recovery process. A major part of rock size reduction occurs in tumbling mills. Empirical models for the power draw of tumbling mills do not consider the effect of lifters. Discrete element modelling was used to investigate the effect of lifter condition on the power draw of tumbling mill. Results obtained with PFC3D code show that lifter condition will have a significant influence on the power draw and on the mode of energy consumption in the mill. Relatively high lifters will consume less power than low lifters, under otherwise identical conditions. The fraction of the power that will be consumed as friction will increase as the height of the lifters decreases. This will result in less power being used for high intensity comminution caused by the impacts. The fraction of the power that will be used to overcome frictional resistance is determined by the material's coefficient of friction. Based on the modelled results, it appears that the effective coefficient of friction for in situ mill is close to 0.1. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Using a social identity perspective, two experiments examined the effects of power and the legitimacy of power differentials on intergroup bias. In Experiment 1, 125 math-science students were led to believe that they had high or low representation in a university decision-making body relative to social-science students and that this power position was either legitimate or illegitimate. Power did not have an independent effect on bias; rather, members of both high and low power groups showed more bias when the power hierarchy was illegitimate than when it was legitimate. This effect was replicated in Experiment 2 (N =105). In addition, Experiment 2 showed that groups located within an unfair power hierarchy expected the superordinate power body to be more discriminatory than did those who had legitimately high or low power. The results are discussed in terms of their implications for group relations.
Resumo:
Two new species of lepocreadiid trematodes are described from teleost fishes from off the coast of northern Tasmania. Opechona kahawai sp. nov. from Arripis sp. (Arripidae) differs from congeners by a combination of a longer prepharynx, longer excretory vesicle and the genital pore antero-sinistral to the ventral sucker. Cephalolepidapedon warehou sp. nov. from Seriolella punctata (Centrolophidae) differs from its only congener in the vitellarium reaching into the posterior forebody, a heavy concentration of eye-spot pigment in the forebody, a relatively narrower and more elongate body, a longer prepharynx and a more distinct oesophagus.
Resumo:
An opecoelid digenean, Dactylomyza gibsoni n. g., n. sp. is described and figured from Schuettea woodwardi (Waite), a monodactylid from off the coast of Western Australia. The new genus conforms to the concept of the opecoelid subfamily Opecoelinae. The resemblance of the new genus to three other opecoelid genera, Pseudopecoeloides Yamaguti, 1940, Opecoeloides Odhner, 1928 and Poracanthium Dollfus, 1948, is discussed. Dactylomyza n. g. is distinguished from these morphologically similar worms on the basis of its median genital pore, ventral sucker appendages, uroproct and the absence of an accessory sucker. Pseudopecoeloides equesi Manter, 1947 is transferred to the new genus as Dactylomyza equesi (Manter, 1947) n. comb.
Resumo:
The power required to operate large mills is typically 5-10 MW. Hence, optimisation of power consumption will have a significant impact on overall economic performance and environmental impact. Power draw modelling results using the discrete element code PFC3D have been compared with results derived from the widely used empirical Model of Morrell. This is achieved by calculating the power draw for a range of operating conditions for constant mill size and fill factor using two modelling approaches. fThe discrete element modelling results show that, apart from density, selection of the appropriate material damping ratio is critical for the accuracy of modelling of the mill power draw. The relative insensitivity of the power draw to the material stiffness allows selection of moderate stiffness values, which result in acceptable computation time. The results obtained confirm that modelling of the power draw for a vertical slice of the mill, of thickness 20% of the mill length, is a reliable substitute for modelling the full mill. The power draw predictions from PFC3D show good agreement with those obtained using the empirical model. Due to its inherent flexibility, power draw modelling using PFC3D appears to be a viable and attractive alternative to empirical models where necessary code and computer power are available.