932 resultados para heavy metal stress


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deposition and properties of electroless nickel composite coatings containing graphite, PTFE and chromium were investigated. Solutions were developed for the codeposition of graphite and chromium with electroless nickel. Solutions for the deposition of graphite contained heavy metal ions for stability, with non-ionic and anionic surfactants to provide wetting and dispersion of the particles. Stability for the codeposition of chromium particles was achieved by oxidation of the chromium. Thin oxide layers of 200 nm thick prevented initiation of the electroless reaction onto the chromium. A mechanism for the formation of electroless composite coatings was considered based on the physical adsorption of particles and as a function of the adsorption of charged surfactants and metal cations from solution. The influence of variables such as particle concentration in solution, particle size, temperature, pH, and agitation on the volume percentage of particles codeposited was studied. The volume percentage of graphite codeposited was found to increase with concentration in solution and playing rate. An increase in particle size and agitation reduced the volume percentage codeposited. The hardness of nickel-graphite deposits was found to decrease with graphite content in the as-deposited and heat treated condition. The frictional and wear properties of electroless nickel-graphite were studied and compared to those of electroless nickel-PTFE. The self-lubricating nature of both coatings was found to be dependent on the ratio of coated area to uncoated area, the size and content of lubricating material in the deposit, and the load between contacting surfaces. The mechanism of self-lubrication was considered, concluding that graphite only produced an initial lubricating surface due to the orientation of flakes, unlike PTFE, which produced true self-lubrication throughout the coating life. Heat treatment of electroless nickel chromium deposits at 850oC for 8 and 16 hours produced nickel-iron-chromium alloy deposits with a phosphorus rich surface of high hardness. Coefficients of friction and wear rates were intially moderate for the phosphorus rich layer but increased for the nickel-iron-chromium region of the coating.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research work reported in this thesis is concerned with the development and application of an urban scale sampling methodology for measuring and assessing background levels of heavy metal soil contamination in large and varied urban areas. The policy context of the work is broadly the environmental health problems posed by contaminated land and their implications for urban development planning. Within this wider policy context, the emphasis in the research has been placed on issues, related to the determination and application of 'guidelines' for assessing the significance of contaminated land for environmental planning. In concentrating on background levels of land contamination, the research responds to the need for additional techniques which address both the problems of measuring soil contamination at the urban scale and which are also capable of providing detailed information for use in the assessment of contaminated sites. Therefore, a key component of the work has been the development of a land-use based sampling framework for generating spatially comprehensive data on heavy metals in soil. The utility of the information output of the sampling method is demonstrated in two alternative ways. Firstly, it has been used to map the existing pattern of typical levels of heavy metals in urban soils. Secondly, it can be used to generate both generalised data in the form of 'reference levels' from which the overall significance of .background contamination may be assessed and detailed data, termed 'normal limit levels' for use in the assessment of site specific investigation data. The fieldwork was conducted in the West Midlands Metropolitan County and surface soil has been sampled and analysed for a measure of plant-available' and 'total' lead cadmium, copper and zinc. The research contrasts with much of the previous work on contaminated land which has generally concentrated on either the detailed investigation of individual sites suspected of being contaminated or the appraisal of land contamination resulting from specific point sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review discusses the connection between quantitative changes of environmental factors and oribatid communities. With the overview of available studies, it can be clearly explored how various characteristics of Oribatid communities are modified due to changes in moisture, temperature, heavy metal concentration, organic matter content and level of disturbance. The most important question concerning the application of Oribatids as indicators is to clarify what kind of information content does natural Oribatid coenological patterns possess from the aspect of bioindication. Most of the variables listed above can be directly measured, since rapid methods are available to quantify parameters of the soil. Responses of Oribatids are worth to study in a more complex approach. Even now we have an expansive knowledge on how communities change due to modifications of different factors. These pieces of information necessitate the elaboration of such methods which render Oribatid communities suitable for the task to prognosticate what extent the given site can be considered near-natural or degraded, based on the Oribatid composition of a single sample taken from the given area. Answering this problem needs extensive and coordinated work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface Plasmon Resonance (SPR) and localized surface plasmon resonance (LSPR) biosensors have brought a revolutionary change to in vitro study of biological and biochemical processes due to its ability to measure extremely small changes in surface refractive index (RI), binding equilibrium and kinetics. Strategies based on LSPR have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of diseases, environmental analysis, food safety, and chemical threat detection. In LSPR spectroscopy, absorption and scattering of light are greatly enhanced at frequencies that excite the LSPR, resulting in a characteristic extinction spectrum that depends on the RI of the surrounding medium. Compositional and conformational change within the surrounding medium near the sensing surface could therefore be detected as shifts in the extinction spectrum. This dissertation specifically focuses on the development and evaluation of highly sensitive LSPR biosensors for in situ study of biomolecular binding process by incorporating nanotechnology. Compared to traditional methods for biomolecular binding studies, LSPR-based biosensors offer real-time, label free detection. First, we modified the gold sensing surface of LSPR-based biosensors using nanomaterials such as gold nanoparticles (AuNPs) and polymer to enhance surface absorption and sensitivity. The performance of this type of biosensors was evaluated on the application of small heavy metal molecule binding affinity study. This biosensor exhibited ∼7 fold sensitivity enhancement and binding kinetics measurement capability comparing to traditional biosensors. Second, a miniaturized cell culture system was integrated into the LSPR-based biosensor system for the purpose of real-time biomarker signaling pathway studies and drug efficacy studies with living cells. To the best of our knowledge, this is the first LSPR-based sensing platform with the capability of living cell studies. We demonstrated the living cell measurement ability by studying the VEGF signaling pathway in living SKOV-3 cells. Results have shown that the VEGF secretion level from SKOV-3 cells is 0.0137 ± 0.0012 pg per cell. Moreover, we have demonstrated bevacizumab drug regulation to the VEGF signaling pathway using this biosensor. This sensing platform could potentially help studying biomolecular binding kinetics which elucidates the underlying mechanisms of biotransportation and drug delivery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The eggs of the dengue fever vector Aedes aegypti possess the ability to undergo an extended quiescence period hosting a fully developed first instar larvae within its chorion. As a result of this life history stage, pharate larvae can withstand months of dormancy inside the egg where they depend on stored reserves of maternal origin. This adaptation known as pharate first instar quiescence, allows A. aegypti to cope with fluctuations in water availability. An examination of this fundamental adaptation has shown that there are trade-offs associated with it. ^ Aedes aegypti mosquitoes are frequently associated with urban habitats that may contain metal pollution. My research has demonstrated that the duration of this quiescence and the extent of nutritional depletion associated with it affects the physiology and survival of larvae that hatch in a suboptimal habitat; nutrient reserves decrease during pharate first instar quiescence and alter subsequent larval and adult fitness. The duration of quiescence compromises metal tolerance physiology and is coupled to a decrease in metallothionein mRNA levels. My findings also indicate that even low levels of environmentally relevant larval metal stress alter the parameters that determine vector capacity. ^ My research has also demonstrated that extended pharate first instar quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Extended pharate first instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner, i.e., anticipatory phenotypic plasticity results as a consequence of the duration of pharate first instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. M findings may explain, in part, A. aegypti's success as a vector and its geographic distribution and have implications for its vector capacity and control.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antibiotic resistance has become an important area of research because of the excessive use of antibiotics in clinical and agricultural settings that are driving the evolution of antibiotic resistant bacteria. However, drug tolerance is a naturally occurring phenomenon in soil communities, and is often linked to those soils that are exposed to heavy metals as well as antibiotics. Resistance to antibiotics maybe coupled with resistance to heavy metals in soil bacteria through efflux pumps that can be regulated by iron. Although considered s a heavy metal, iron is an essential component of life that regulates gene expression through the Ferric Uptake Regulator (Fur) protein. This master regulator protein is known to control siderophore production, and other biological pathways. As a suspected controller of biofilm formation, the role of Fur in environmental antibiotic resistance may be greater than is currently realized. In this study, we sought to explore a potential Fur-regulated drug tolerance pathway by understanding the response of soil bacteria when stressed with oxytetracycline and iron. Bacteria were collected from two locations in Miami Dade County. Isolates were first tested using Kirby-Bauer Disk Diffusion tests for antibiotic resistance/susceptibility and identified by 16S rDNA sequencing. A 96-well growth assay was developed to measure planktonic cell growth with 3 mM FeCl3, Oxytetracycline HCl, and the combination treatments. A Microtiter Dish Biofilm Formation Assay was employed and Fur diversity was evaluated. Tetracycline-susceptible bacterial isolates developed drug resistance with iron supplementation, but iron did not enhance biofilm formation. Development of a Fur-dependent drug resistance may be selected for, but further study is required to evaluate Fur evolution in the studied isolates. Gene expression analysis is also needed to further understand the ecological role of Fur and antibiotic resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hexavalent chromium is a heavy metal present in various industrial effluents, and depending on its concentration may cause irreparable damage to the environment and to humans. Facing this surrounding context, this study aimed on the application of electrochemical methods to determine and remove the hexavalent chromium (Cr6+) in simulated wastewater. To determine was applied to cathodic stripping voltammetry (CSV) using ultra trace graphite electrodes ultra trace (work), Ag/AgCl (reference) and platinum (counter electrode), the samples were complexed with 1,5- diphenylcarbazide and then subjected to analysis. The removal of Cr6+ was applied electrocoagulation process (EC) using Fe and Al electrodes. The variables that constituted the factorial design 24, applied to optimizing the EC process, were: current density (5 and 10 mA.cm-2), temperature (25 and 60 ºC), concentration (50 and 100 ppm) and agitation rate (400 and 600 RPM). Through the preliminary test it was possible the adequacy of applying the CSV for determining of Cr6+, removed during the EC process. The Fe and Al electrodes as anodes sacrifice showed satisfactory results in the EC process, however Fe favored complete removal in 30 min, whereas with Al occurred at 240 min. In the application of factorial design 24 and analysis of Response Surface Methodology was possible to optimize the EC process for removal of Cr6+ in H2SO4 solution (0.5 mol.L-1), in which the temperature, with positive effect, was the variable that presented higher statistical significance compared with other variables and interactions, while in optimizing the EC process for removal of Cr6+ in NaCl solution (0.1 mol.L-1) the current density, with positive effect, and concentration, with a negative effect were the variables that had greater statistical significance with greater statistical significance compared with other variables and interactions. The utilization of electrolytes supports NaCl and Na2SO4 showed no significant differences, however NaCl resulted in rapid improvement in Cr6+ removal kinetics and increasing the NaCl concentration provided an increase in conductivity of the solution, resulting in lower energy consumption. The wear of the electrodes evaluated in all the process of EC showed that the Al in H2SO4 solution (0.5 mol.L-1), undergoes during the process of anodization CE, then the experimental mass loss is less than the theoretical mass loss, however, the Fe in the same medium showed a loss of mass greater experimental estimated theoretically. This fact is due to a spontaneous reaction of Fe with H2SO4, and when the reaction medium was the NaCl and Na2SO4 loss experimental mass approached the theoretical mass loss. Furthermore, it was observed the energy consumption of all processes involved in this study had a low operating cost, thus enabling the application of the EC process for treating industrial effluents. The results were satisfactory, it was achieved complete removal of Cr6+ in all processes used in this study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work contributed to The input of PS and PCW contributes to the Belmont Forum/FACCE-JPI funded DEVIL project (NE/M021327/1) and for PS also contributes to the EU FP7 SmartSoil project (Project number: 289694)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work contributed to The input of PS and PCW contributes to the Belmont Forum/FACCE-JPI funded DEVIL project (NE/M021327/1) and for PS also contributes to the EU FP7 SmartSoil project (Project number: 289694)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ancient Lake Ohrid, located in the southern Balkan Peninsula in Macedonia and Albania is characterized by a high degree of endemism and it is considered to be the oldest lake in Europe. But its exact age (between one and ten million years) and also its origin are so far not known. To unravel these uncertainties an ICDP (International Continental Scientific Drilling Program) drilling project (Scientific Collaboration On Past Speciation Conditions in Ohrid (SCOPSCO)), started in April 2013. In addition to the investigations about the age and origin, other paleolimnological studies, e.g., the reconstruction of past climate and of past lake level changes, should be performed with the drilled cores. Used proxies in such paleolimnological studies are, e.g., ostracodes because they respond sensitively to environmental changes but an accurate knowledge of their preferences and tolerances to specific environmental conditions is necessary for this purpose. So far, this knowledge about the, mostly endemic, Ohrid ostracodes was limited. Thus, within the framework of this thesis, ostracodes and a multiplicity of environmental data were collected in Lake Ohrid and its adjacent waters during four field campaigns. In a total of 47 ostracode species could be detected in the entire study area and 32 of them were found alive in Lake Ohrid. Multivariate statistic identified that water depth, salinity, conductivity, pH, and dissolved oxygen were the main determining factors for ostracode distribution in the entire study area. In Lake Ohrid, the distribution was mainly controlled by water depth, water temperature, and pH. Some ostracodes were identified as strong indicator species for important environmental variables, e.g., water temperature and water depth. A distinctive feature of Lake Ohrid was the finding of the ostracode genus Amnicythere whose species normally inhabit oligo-(meso-)haline waters and this could point to a marine origin of the lake. So far, the specialized endemic ostracodes show the highest abundances and the greatest spatial distribution in Lake Ohrid but during the sampling eight widespread species were found for the first time in the lake. They inhabited mainly the northern part of the lake, where two cities are located and industry and agriculture play a major role, and they were limited to water depths above 50 m and this could be an evidence for an increasing anthropogenic pressure because widespread ostracode species often replace endemic species. To unravel the human impact on Lake Ohrid during the last decades short sediment cores were taken and the multi-proxy study indicated that the lake productivity between the early 1920s and the late 1980s was relatively low. Diatom assemblages indicate a rising productivity in the southern part of Lake Ohrid since the mid 1970s and geochemical proxies and ostracodes point to an increasing productivity since the late 1980s in the southern and in the northern part. A slight increase in the productivity continued until 2009. Noticeable is the fact that since the early 1990s, the increasing productivity and the increasing concentrations of heavy metals correspond to a decreasing number of ostracodes in the northern part of Lake Ohrid. Perhaps, this indicates that living conditions in this lake part became less favorable for the mostly endemic ostracode species. Furthermore, the sediment samples from the cores show relatively high concentrations of arsenic, iron, and nickel. Fluctuations in ostracode assemblages from three longer sediment cores, the longest spans approximately 136 ka, taken in Lake Ohrid, correspond to fluctuations in the productivity, in the carbonate content, of the lake level, and of climate changes. Between the marine isotope stage (MIS) 6 and MIS 2 the number of ostracode valves is very low or the valves were completely absent. This corresponds to a low lake productivity, a low carbonate content, and a low lake level. At the onset of the Holocene, the number of valves increased markedly and this correlates with an increased productivity and carbonate content and a warmer climate. But during the Little Ice Age (LIA), the number of valves dropped again and species which prefer warmer waters disappeared completely. This drop corresponds also to a low productivity. After the LIA, the number of species increased again but since 1895 AD a strong and abrupt decrease is visible. A reason for this could be an increase in the heavy metal concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cuttings of Lower and Middle Keuper sediments of the INFLUINS-drilling in the central Thuringian Syncline were geochemically analysed. Indications about shifting depositional environments are interpreted from ratios of whole-rock element contents. For the middle part of sandstone cycle S 2 high heavy metal contents imply precipitation of sufidic ores during a short marine interval. Element contents are compared with potential source rocks in the southern part of the Baltic Shield, in the Lausitz Anticline Zone, in the Erzgebirge, in the moldanubian part, in the broad sense, of the Bohemian Massif, in the Münchberg Gneiss Massif and the Fichtelgebirge. The geochemical coincidence of investigated Keuper sediments is highest with grantioid and gabbroic rocks of southern Scandinavia. Granodiorite rocks of the Lausitz are also possible sources, whereas granites of the Fichtelgebirge and the Bohemian Massif are less probable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Attempts to classify pelagic sediments have been based either on appearance and composition, or on the ultimate origin of the components. In particular it appears feasible to distinguish minerals which crystallized in sea-water from those which formed in magmas, in hydrothermal solution, or by weathering under acidic conditions. It is the case of iron and manganese oxide mineral aggregates which constitute one of the major types of rock encountered on the ocean floor; according to Menard (unpublished) about 10% of the pelagic area of the Pacific is covered by such nodules. The nodules consist of intimately intergrown crystallites of different minerals among those identified, besides detrital minerals and organic matter, are opal, goethite, rutile, anatase, barite, nontronite, and at least three manganese oxide minerals of major importance. Arrhenius and Korkisch (1959) have attempted to separate from each other the different minerals constituting the nodules, in order to establish the details of their structure and the localization of the heavy metal ions. The results demonstrate (Table II) that copper and nickel are concentrated in the manganese oxide phases concentrated in the reducible fraction. Cobalt, part of the nickel and most of the chromium are distributed between these and the acid-soluble group of the non-manganese minerals, dominated by goethite and disordered FeOOH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A preliminary set of heavy metal analyses from surface sediment samples covering the whole Adriatic Basin is presented, and their significance in terms of pollution is discussed. The core samples were analysed for Fe, Mn, Cr, Cu, Ni, Pb, Zn, P, organic carbon, Ca- and Mg-carbonate, and their mineralogical composition and grain size distribution were determined. All heavy metal concentrations found can be attributed to natural sedimentological processes and are not necessarily to be interpreted as indications of pollution.