942 resultados para hazardous metal ions


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Incubation of Na/K-ATPase with ascorbate plus H2O2 produces specific cleavage of the α subunit. Five fragments with intact C termini and complementary fragments with intact N termini were observed. The β subunit is not cleaved. Cleavages depend on the presence of contaminant or added Fe2+ ions, as inferred by suppression of cleavages with nonspecific metal complexants (histidine, EDTA, phenanthroline) or the Fe3+-specific complexant desferrioxamine, or acceleration of cleavages by addition of low concentrations of Fe2+ but not of other heavy metal ions. Na/K-ATPase is inactivated in addition to cleavage, and both effects are insensitive to OH⋅ radical scavengers. Cleavages are sensitive to conformation. In low ionic strength media (E2) or media containing Rb ions [E2(Rb)], cleavage is much faster than in high ionic strength media (E1) or media containing Na ions (E1Na). N-terminal fragments and two C-terminal fragments (N-terminals E214 and V712) have been identified by amino acid sequencing. Approximate positions of other cleavages were determined with specific antibodies. The results suggest that Fe2+ (or Fe3+) ions bind with high affinity at the cytoplasmic surface and catalyze cleavages of peptide bonds close to the Fe2+ (or Fe3+) ion. Thus, cleavage patterns can provide information on spatial organization of the polypeptide chain. We propose that highly conserved regions of the α subunit, within the minor and major cytoplasmic loops, interact in the E2 or E2(Rb) conformations but move apart in the E1 or E1Na conformations. We discuss implications of domain interactions for the energy transduction mechanism. Fe-catalyzed cleavages may be applicable to other P-type pumps or membrane proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RNAs that undergo a rapid site-specific cleavage at low pH have been selected by in vitro selection (the SELEX process). The cleavage does not require the addition of any divalent metal ions, and is in fact inhibited by divalent metal ions, spermine, or high concentrations of monovalent metal ions. This low pH catalyzed cleavage results in a 2′,3′-cyclic phosphate at the 3′ end and a free hydroxyl at the 5′ end. The reaction proceeds with a calculated rate of 1.1 min−1 at room temperature in cacodylate buffer at pH 5.0. The rate of cleavage is dependent on the pH and shows an optimum around pH 4.0. The rate constant is independent of RNA concentration, indicating to an intramolecular reaction. Autocatalytic cleavage at low pH, in the absence of a metal ion requirement, adds to the reaction possibilities that may have existed on the prebiotic earth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystal structure of an enzyme–substrate complex with histidyl-tRNA synthetase from Escherichia coli, ATP, and the amino acid analog histidinol is described and compared with the previously obtained enzyme–product complex with histidyl-adenylate. An active site arginine, Arg-259, unique to all histidyl-tRNA synthetases, plays the role of the catalytic magnesium ion seen in seryl-tRNA synthetase. When Arg-259 is substituted with histidine, the apparent second order rate constant (kcat/Km) for the pyrophosphate exchange reaction and the aminoacylation reaction decreases 1,000-fold and 500-fold, respectively. Crystals soaked with MnCl2 reveal the existence of two metal binding sites between β- and γ-phosphates; these sites appear to stabilize the conformation of the pyrophosphate. The use of both conserved metal ions and arginine in phosphoryl transfer provides evidence of significant early functional divergence of class II aminoacyl-tRNA synthetases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One mechanism of silver resistance in microorganisms is accumulation of the metal ions in the cell. Here, we report on the phenomenon of biosynthesis of silver-based single crystals with well-defined compositions and shapes, such as equilateral triangles and hexagons, in Pseudomonas stutzeri AG259. The crystals were up to 200 nm in size and were often located at the cell poles. Transmission electron microscopy, quantitative energy-dispersive x-ray analysis, and electron diffraction established that the crystals comprise at least three different types, found both in whole cells and thin sections. These Ag-containing crystals are embedded in the organic matrix of the bacteria. Their possible potential as organic-metal composites in thin film and surface coating technology is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first Zn(II)-translocating P-type ATPase has been identified as the product of o732, a potential gene identified in the sequencing of the Escherichia coli genome. This gene, termed zntA, was disrupted by insertion of a kanamycin gene through homologous recombination. The mutant strain exhibited hypersensitivity to zinc and cadmium salts but not salts of other metals, suggesting a role in zinc homeostasis in E. coli. Everted membrane vesicles from a wild-type strain accumulated 65Zn(II) and 109Cd(II) by using ATP as an energy source. Transport was sensitive to vanadate, an inhibitor of P-type ATPases. Membrane vesicles from the zntA∷kan strain did not accumulate those metal ions. Both the sensitive phenotype and transport defect of the mutant were complemented by expression of zntA on a plasmid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selenium has been increasingly recognized as an essential element in biology and medicine. Its biochemistry resembles that of sulfur, yet differs from it by virtue of both redox potentials and stabilities of its oxidation states. Selenium can substitute for the more ubiquitous sulfur of cysteine and as such plays an important role in more than a dozen selenoproteins. We have chosen to examine zinc–sulfur centers as possible targets of selenium redox biochemistry. Selenium compounds release zinc from zinc/thiolate-coordination environments, thereby affecting the cellular thiol redox state and the distribution of zinc and likely of other metal ions. Aromatic selenium compounds are excellent spectroscopic probes of the otherwise relatively unstable functional selenium groups. Zinc-coordinated thiolates, e.g., metallothionein (MT), and uncoordinated thiolates, e.g., glutathione, react with benzeneseleninic acid (oxidation state +2), benzeneselenenyl chloride (oxidation state 0) and selenocystamine (oxidation state −1). Benzeneseleninic acid and benzeneselenenyl chloride react very rapidly with MT and titrate substoichiometrically and with a 1:1 stoichiometry, respectively. Selenium compounds also catalyze the release of zinc from MT in peroxidation and thiol/disulfide-interchange reactions. The selenoenzyme glutathione peroxidase catalytically oxidizes MT and releases zinc in the presence of t-butyl hydroperoxide, suggesting that this type of redox chemistry may be employed in biology for the control of metal metabolism. Moreover, selenium compounds are likely targets for zinc/thiolate coordination centers in vivo, because the reactions are only partially suppressed by excess glutathione. This specificity and the potential to undergo catalytic reactions at low concentrations suggests that zinc release is a significant aspect of the therapeutic antioxidant actions of selenium compounds in antiinflammatory and anticarcinogenic agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of aminoglycosides have been reported to interact and interfere with the function of various RNA molecules. Among these are 16S rRNA, the group I intron, and the hammerhead ribozymes. In this report we show that cleavage by RNase P RNA in the absence as well as in the presence of the RNase P protein is inhibited by several aminoglycosides. Among the ones we tested, neomycin B was found to be the strongest inhibitor with a Ki value in the micromolar range (35 μM). Studies of lead(II)-induced cleavage of RNase P RNA suggested that binding of neomycin B interfered with the binding of divalent metal ions to the RNA. Taken together, our findings suggest that aminoglycosides compete with Mg2+ ions for functionally important divalent metal ion binding sites. Thus, RNase P, which is an essential enzyme, is indeed a potential drug target that can be used to develop new drugs by using various aminoglycosides as lead compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The putative catalytic domain (residues 81–401) of a predicted tomato protein with similarity to 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase of Escherichia coli was expressed in a recombinant E. coli strain. The protein was purified to homogeneity and was shown to catalyze the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2-C-methyl-d-erythritol at a rate of 33 μmol⋅mg−1⋅min−1. The structure of the reaction product, 4-diphosphocytidyl-2-C-methyl-d-erythritol 2-phosphate, was established by NMR spectroscopy. Divalent metal ions, preferably Mg2+, are required for activity. Neither the tomato enzyme nor the E. coli ortholog catalyzes the phosphorylation of isopentenyl monophosphate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cleavage of RNA can be accelerated by a number of factors. These factors include an acidic group (Lewis acid) or a basic group that aids in the deprotonation of the attacking nucleophile, in effect enhancing the nucleophilicity of the nucleophile; an acidic group that can neutralize and stabilize the leaving group; and any environment that can stabilize the pentavalent species that is either a transition state or a short-lived intermediate. The catalytic properties of ribozymes are due to factors that are derived from the complicated and specific structure of the ribozyme–substrate complex. It was postulated initially that nature had adopted a rather narrowly defined mechanism for the cleavage of RNA. However, recent findings have clearly demonstrated the diversity of the mechanisms of ribozyme-catalyzed reactions. Such mechanisms include the metal-independent cleavage that occurs in reactions catalyzed by hairpin ribozymes and the general double-metal-ion mechanism of catalysis in reactions catalyzed by the Tetrahymena group I ribozyme. Furthermore, the architecture of the complex between the substrate and the hepatitis delta virus ribozyme allows perturbation of the pKa of ring nitrogens of cytosine and adenine. The resultant perturbed ring nitrogens appear to be directly involved in acid/base catalysis. Moreover, while high concentrations of monovalent metal ions or polyamines can facilitate cleavage by hammerhead ribozymes, divalent metal ions are the most effective acid/base catalysts under physiological conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of mutant human and yeast copper-zinc superoxide dismutases has been prepared, with mutations corresponding to those found in familial amyotrophic lateral sclerosis (ALS; also known as Lou Gehrig's disease). These proteins have been characterized with respect to their metal-binding characteristics and their redox reactivities. Replacement of Zn2+ ion in the zinc sites of several of these proteins with either Cu2+ or Co2+ gave metal-substituted derivatives with spectroscopic properties different from those of the analogous derivative of the wild-type proteins, indicating that the geometries of binding of these metal ions to the zinc site were affected by the mutations. Several of the ALS-associated mutant copper-zinc superoxide dismutases were also found to be reduced by ascorbate at significantly greater rate than the wild-type proteins. We conclude that similar alterations in the properties of the zinc binding site can be caused by mutations scattered throughout the protein structure. This finding may help to explain what is perhaps the most perplexing question in copper-zinc superoxide dismutase-associated familial ALS-i.e., how such a diverse set of mutations can result in the same gain of function that causes the disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present new methods for identifying and analyzing statistically significant residue clusters that occur in three-dimensional (3D) protein structures. Residue clusters of different kinds occur in many contexts. They often feature the active site (e.g., in substrate binding), the interface between polypeptide units of protein complexes, regions of protein-protein and protein-nucleic acid interactions, or regions of metal ion coordination. The methods are illustrated with 3D clusters centering on four themes. (i) Acidic or histidine-acidic clusters associated with metal ions. (ii) Cysteine clusters including coordination of metals such as zinc or iron-sulfur structures, cysteine knots prominent in growth factors, multiple sets of buried disulfide pairings that putatively nucleate the hydrophobic core, or cysteine clusters of mostly exposed disulfide bridges. (iii) Iron-sulfur proteins and charge clusters. (iv) 3D environments of multiple histidine residues. Study of diverse 3D residue clusters offers a new perspective on protein structure and function. The algorithms can aid in rapid identification of distinctive sites, suggest correlations among protein structures, and serve as a tool in the analysis of new structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cu(II) ions have been reacted with a 1/1 mixture of two linear ligands, one containing three 2,2'- bipyridine groups and the other three 2,2':6',2"-terpyridine groups. Absorption spectroscopy and fast atom bombardment mass spectrometry indicate the formation of a trinuclear complex containing one ligand of each kind. Determination of the crystal structure of this compound has confirmed that it is indeed a linear trinuclear complex in which two different ligands are wrapped in a helical fashion around the pentacoordinated metal ions. The central coordination geometry is trigonal bipyramidal; the two lateral Cu(II) ions are in a square pyramidal environment. Thus, a heteroduplex helicate is formed by the self-assembly of two different ligand strands and three specific metal ions induced by the coordination number and geometry of the latter. The self-assembly process may be considered to result from the reading of the steric and binding information present in the two ligands by Cu(II) ions through a pentacoordination algorithm. The same ligands have been shown earlier to yield homoduplex helicates from ions of tetrahedral and octahedral coordination geometry and strands of bidentate bipyridines and tridentate terpyridines, respectively. These two types of artificial double helical species may be related on one hand to the natural homoduplex nucleic acids and on the other hand to the DNA:RNA heteroduplex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biological processes often require that a single gene product participate in multiple types of molecular interactions. Viruses with quasiequivalent capsids provide an excellent paradigm for studying such phenomena because identical protein subunits are found in different structural environments. Differences in subunit joints may be controlled by protein segments, duplex or single-stranded RNA, metal ions, or some combination of these. Each of the virus groups examined display a distinctive mechanism for switching interface interactions, illustrating the magnitude of options that are likely to be found in other biological systems. In addition to determining capsid morphology, assembly controls the timing of autocatalytic maturation cleavage of the viral subunits that is required for infectivity in picorna-, noda-, and tetraviruses. The mechanism of assembly-dependent cleavage is conserved in noda- and tetraviruses, although the quaternary structures of the capsids are different as are the molecular switches that control subunit interfaces. The function of the cleavage in picorna-, noda-, and tetraviruses is probably to release polypeptides that participate in membrane translocation of RNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gold(I) salts and selenite, which have diverse therapeutic and biological effects, are noted for their reactivity with thiols. Since the binding of Jun-Jun and Jun-Fos dimers to the AP-1 DNA binding site is regulated in vitro by a redox process involving conserved cysteine residues, we hypothesized that some of the biological actions of gold and selenium are mediated via these residues. In electrophoretic mobility-shift analyses, AP-1 DNA binding was inhibited by gold(I) thiolates and selenite, with 50% inhibition occurring at approximately 5 microM and 1 microM, respectively. Thiomalic acid had no effect in the absence of gold(I), and other metal ions inhibited at higher concentrations, in a rank order correlating with their thiol binding affinities. Cysteine-to-serine mutants demonstrated that these effects of gold(I) and selenite require Cys272 and Cys154 in the DNA-binding domains of Jun and Fos, respectively. Gold(I) thiolates and selenite did not inhibit nonspecific protein binding to the AP-1 site and were at least an order of magnitude less potent as inhibitors of sequence-specific binding to the AP-2, TFIID, or NF1 sites compared with the AP-1 site. In addition, 10 microM gold(I) or 10 microM selenite inhibited expression of an AP-1-dependent reporter gene, but not an AP-2-dependent reporter gene. These data suggest a mechanism regulating transcription factor activity by inorganic ions which may contribute to the known antiarthritic action of gold and cancer chemoprevention by selenium.