607 resultados para graphene resonator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy.

Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD’s thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2’s bandgap, can have a strong dependence on TiO2’s thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., < 10 nm) TiO2 films. ALD was also used to conformally coat an ultraporous conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold with an ultrathin layer of TiO2. The integration of these ultrathin films and the oxide nanoparticles resulted in a heteronanostructure design with excellent PEC water oxidation photocurrents (0.7 mA/cm2 at 0 V vs. Ag/AgCl) and charge transfer efficiency.

In Chapter 3, two innovative nanoarchitectures were engineered in order to enhance the pseudocapacitive energy storage of next generation supercapacitor electrodes. The morphology and quantity of MnO2 electrodeposits was controlled by adjusting the density of graphene foliates on a novel graphenated carbon nanotube (g-CNT) scaffold. This control enabled the nanocomposite supercapacitor electrode to reach a capacitance of 640 F/g, under MnO2 specific mass loading conditions (2.3 mg/cm2) that are higher than previously reported. In the second engineered nanoarchitecture, the electrochemical energy storage properties of a transparent electrode based on a network of solution-processed Cu/Ni cores/shell nanowires (NWs) were activated by electrochemically converting the Ni metal shell into Ni(OH)2. Furthermore, an adjustment of the molar percentage of Ni plated onto the Cu NWs was found to result in a tradeoff between capacitance, transmittance, and stability of the resulting nickel hydroxide-based electrode. The nominal area capacitance and power performance results obtained for this Cu/Ni(OH)2 transparent electrode demonstrates that it has significant potential as a hybrid supercapacitor electrode for integration into cutting edge flexible and transparent electronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy storage technologies are crucial for efficient utilization of electricity. Supercapacitors and rechargeable batteries are of currently available energy storage systems. Transition metal oxides, hydroxides, and phosphates are the most intensely investigated electrode materials for supercapacitors and rechargeable batteries due to their high theoretical charge storage capacities resulted from reversible electrochemical reactions. Their insulating nature, however, causes sluggish electron transport kinetics within these electrode materials, hindering them from reaching the theoretical maximum. The conductivity of these transition metal based-electrode materials can be improved through three main approaches; nanostructuring, chemical substitution, and introducing carbon matrices. These approaches often lead to unique electrochemical properties when combined and balanced.

Ethanol-mediated solvothermal synthesis we developed is found to be highly effective for controlling size and morphology of transition metal-based electrode materials for both pseudocapacitors and batteries. The morphology and the degree of crystallinity of nickel hydroxide are systematically changed by adding various amounts glucose to the solvothermal synthesis. Nickel hydroxide produced in this manner exhibited increased pseudocapacitance, which is partially attributed to the increased surface area. Interestingly, this morphology effect on cobalt doped-nickel hydroxide is found to be more effective at low cobalt contents than at high cobalt contents in terms of improving the electrochemical performance.

Moreover, a thin layer of densely packed nickel oxide flakes on carbon paper substrate was successfully prepared via the glucose-assisted solvothermal synthesis, resulting in the improved electrode conductivity. When reduced graphene oxide was used for conductive coating on as-prepared nickel oxide electrode, the electrode conductivity was only slightly improved. This finding reveals that the influence of reduced graphene oxide coating, increasing the electrode conductivity, is not that obvious when the electrode is already highly conductive to begin with.

We were able to successfully control the interlayer spacing and reduce the particle size of layered titanium hydrogeno phosphate material using our ethanol-mediated solvothermal reaction. In layered structure, interlayer spacing is the key parameter for fast ion diffusion kinetics. The nanosized layered structure prepared via our method, however, exhibited high sodium-ion storage capacity regardless of the interlayer spacing, implying that interlayer space may not be the primary factor for sodium-ion diffusion in nanostructured materials, where many interstitials are available for sodium-ion diffusion.

Our ethanol-mediated solvothermal reaction was also effective for synthesis of NaTi2(PO4)3 nanoparticles with uniform size and morphology, well connected by a carbon nanotube network. This composite electrode exhibited high capacity, which is comparable to that in aqueous electrolyte, probably due to the uniform morphology and size where the preferable surface for sodium-ion diffusion is always available in all individual particles.

Fundamental understandings of the relationship between electrode microstructures and electrochemical properties discussed in this dissertation will be important to design high performance energy storage system applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites based on polyaniline (PANI) and carbon nanostructures (CNSs) (graphene (G) and multiwall carbon nanotubes (MWCNTs)) were prepared by in situ electrochemical polymerization. CNSs were inserted into the PANI matrix by dispersing them into the electrolyte before the electropolymerization. Electrochemical characterization by means of cyclic voltammetry and steady state polarization were performed in order to determine conditions for electro- polymerization. Electro-polymerization of the PANI based nanocomposites was carried out at 0.75 V vs. saturated calomel electrode (SCE) for 40 and 60 minutes. The morphology and structural characteristics of the obtained nanocomposites were studied by scanning electron microscopy (SEM) and Raman spectroscopy, while thermal stability was determined using thermal gravimetric analysis (TGA). According to the morphological and structural study, fibrous and porous structure of PANI based nanocomposites was detected well embedding both G and MWCNTs. Also, strong interaction between quinoidal structure of PANI with carbon nanostructures via π–π stacking was detected by Raman spectroscopy. TGA showed the increased thermal stability of composites reinforced with CNSs, especially those reinforced with graphene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miniaturized, self-sufficient bioelectronics powered by unconventional micropower may lead to a new generation of implantable, wireless, minimally invasive medical devices, such as pacemakers, defibrillators, drug-delivering pumps, sensor transmitters, and neurostimulators. Studies have shown that micro-enzymatic biofuel cells (EBFCs) are among the most intuitive candidates for in vivo micropower. In the fisrt part of this thesis, the prototype design of an EBFC chip, having 3D intedigitated microelectrode arrays was proposed to obtain an optimum design of 3D microelectrode arrays for carbon microelectromechanical systems (C-MEMS) based EBFCs. A detailed modeling solving partial differential equations (PDEs) by finite element techniques has been developed on the effect of 1) dimensions of microelectrodes, 2) spatial arrangement of 3D microelectrode arrays, 3) geometry of microelectrode on the EBFC performance based on COMSOL Multiphysics. In the second part of this thesis, in order to investigate the performance of an EBFC, behavior of an EBFC chip performance inside an artery has been studied. COMSOL Multiphysics software has also been applied to analyze mass transport for different orientations of an EBFC chip inside a blood artery. Two orientations: horizontal position (HP) and vertical position (VP) have been analyzed. The third part of this thesis has been focused on experimental work towards high performance EBFC. This work has integrated graphene/enzyme onto three-dimensional (3D) micropillar arrays in order to obtain efficient enzyme immobilization, enhanced enzyme loading and facilitate direct electron transfer. The developed 3D graphene/enzyme network based EBFC generated a maximum power density of 136.3 μWcm-2 at 0.59 V, which is almost 7 times of the maximum power density of the bare 3D carbon micropillar arrays based EBFC. To further improve the EBFC performance, reduced graphene oxide (rGO)/carbon nanotubes (CNTs) has been integrated onto 3D mciropillar arrays to further increase EBFC performance in the fourth part of this thesisThe developed rGO/CNTs based EBFC generated twice the maximum power density of rGO based EBFC. Through a comparison of experimental and theoretical results, the cell performance efficiency is noted to be 67%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents applications of reconfigurable matching networks for RF amplifier design. Two possible solutions are given, one where the switching element is a PIN diode, and the other is based on graphene. Due to the fact that its conductivity depends on applied bias voltage, the graphene-based circuits can be used in microwave circuits as controllable elements. The structure of the proposed switch is very simple and it is particularly convenient for microstrip-based circuits. Because of that, a design of reconfigurable amplifier with the graphene-based switch is presented together with the one which has the PIN diode switch. Both amplifiers have the same specifications, and the one with the PIN diode switch is fabricated. The amplifier utilizing the PIN switch was used as a reference to make a comparison the two types of switches. Results of both amplifiers are very similar which indicates possible future applications of the graphene-based switch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensors for real-time monitoring of environmental contaminants are essential for protecting ecosystems and human health. Refractive index sensing is a non-selective technique that can be used to measure almost any analyte. Miniaturized refractive index sensors, such as silicon-on-insulator (SOI) microring resonators are one possible platform, but require coatings selective to the analytes of interest. A homemade prism refractometer is reported and used to characterize the interactions between polymer films and liquid or vapour-phase analytes. A camera was used to capture both Fresnel reflection and total internal reflection within the prism. For thin-films (d = 10 μm - 100 μm), interference fringes were also observed. Fourier analysis of the interferogram allowed for simultaneous extraction of the average refractive index and film thickness with accuracies of ∆n = 1-7 ×10-4 and ∆d < 3-5%. The refractive indices of 29 common organic solvents as well as aqueous solutions of sodium chloride, sucrose, ethylene glycol, glycerol, and dimethylsulfoxide were measured at λ = 1550 nm. These measurements will be useful for future calibrations of near-infrared refractive index sensors. A mathematical model is presented, where the concentration of analyte adsorbed in a film can be calculated from the refractive index and thickness changes during uptake. This model can be used with Fickian diffusion models to measure the diffusion coefficients through the bulk film and at the film-substrate interface. The diffusion of water and other organic solvents into SU-8 epoxy was explored using refractometry and the diffusion coefficient of water into SU-8 is presented. Exposure of soft baked SU-8 films to acetone, acetonitrile and methanol resulted in rapid delamination. The diffusion of volatile organic compound (VOC) vapours into polydimethylsiloxane and polydimethyl-co-polydiphenylsiloxane polymers was also studied using refractometry. Diffusion and partition coefficients are reported for several analytes. As a model system, polydimethyl-co-diphenylsiloxane films were coated onto SOI microring resonators. After the development of data acquisition software, coated devices were exposed to VOCs and the refractive index response was assessed. More studies with other polymers are required to test the viability of this platform for environmental sensing applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter proposes a high-linearity reconfigurable lower ultra-wideband (3.1–5.25 GHz) filter with independently controlled dual bandnotch at WiMAX 3.5 GHz band and satellite communication systems 4.2 GHz band. Reconfigurability has been achieved by the implementation of Graphene based switches (simulation only) and PIN diodes (measurements). The simulation and measurement results in OFF state show an entire bandpass response from 3.1 GHz to 5.25 GHz and with a very low insertion loss. In ON state, the results show that sharp rejections at 3.5 GHz and 4.2 GHz are achieved, with a low passband insertion loss. The two bandnotch operate independently of each other; thus allowing to control the behaviour of the required bandnotch. The third order intermodulation products were also measured in OFF and ON states and the linearity results have been presented. The filter is able to achieve a high performance with good linearity and no significant loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, novel analog-to-digital and digital-to-analog generalized time-interleaved variable bandpass sigma-delta modulators are designed, analysed, evaluated and implemented that are suitable for high performance data conversion for a broad-spectrum of applications. These generalized time-interleaved variable bandpass sigma-delta modulators can perform noise-shaping for any centre frequency from DC to Nyquist. The proposed topologies are well-suited for Butterworth, Chebyshev, inverse-Chebyshev and elliptical filters, where designers have the flexibility of specifying the centre frequency, bandwidth as well as the passband and stopband attenuation parameters. The application of the time-interleaving approach, in combination with these bandpass loop-filters, not only overcomes the limitations that are associated with conventional and mid-band resonator-based bandpass sigma-delta modulators, but also offers an elegant means to increase the conversion bandwidth, thereby relaxing the need to use faster or higher-order sigma-delta modulators. A step-by-step design technique has been developed for the design of time-interleaved variable bandpass sigma-delta modulators. Using this technique, an assortment of lower- and higher-order single- and multi-path generalized A/D variable bandpass sigma-delta modulators were designed, evaluated and compared in terms of their signal-to-noise ratios, hardware complexity, stability, tonality and sensitivity for ideal and non-ideal topologies. Extensive behavioural-level simulations verified that one of the proposed topologies not only used fewer coefficients but also exhibited greater robustness to non-idealties. Furthermore, second-, fourth- and sixth-order single- and multi-path digital variable bandpass digital sigma-delta modulators are designed using this technique. The mathematical modelling and evaluation of tones caused by the finite wordlengths of these digital multi-path sigmadelta modulators, when excited by sinusoidal input signals, are also derived from first principles and verified using simulation and experimental results. The fourth-order digital variable-band sigma-delta modulator topologies are implemented in VHDL and synthesized on Xilinx® SpartanTM-3 Development Kit using fixed-point arithmetic. Circuit outputs were taken via RS232 connection provided on the FPGA board and evaluated using MATLAB routines developed by the author. These routines included the decimation process as well. The experiments undertaken by the author further validated the design methodology presented in the work. In addition, a novel tunable and reconfigurable second-order variable bandpass sigma-delta modulator has been designed and evaluated at the behavioural-level. This topology offers a flexible set of choices for designers and can operate either in single- or dual-mode enabling multi-band implementations on a single digital variable bandpass sigma-delta modulator. This work is also supported by a novel user-friendly design and evaluation tool that has been developed in MATLAB/Simulink that can speed-up the design, evaluation and comparison of analog and digital single-stage and time-interleaved variable bandpass sigma-delta modulators. This tool enables the user to specify the conversion type, topology, loop-filter type, path number and oversampling ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a reformulation of the hairy-probe method for introducing electronic open boundaries that is appropriate for steady-state calculations involving nonorthogonal atomic basis sets. As a check on the correctness of the method we investigate a perfect atomic wire of Cu atoms and a perfect nonorthogonal chain of H atoms. For both atom chains we find that the conductance has a value of exactly one quantum unit and that this is rather insensitive to the strength of coupling of the probes to the system, provided values of the coupling are of the same order as the mean interlevel spacing of the system without probes. For the Cu atom chain we find in addition that away from the regions with probes attached, the potential in the wire is uniform, while within them it follows a predicted exponential variation with position. We then apply the method to an initial investigation of the suitability of graphene as a contact material for molecular electronics. We perform calculations on a carbon nanoribbon to determine the correct coupling strength of the probes to the graphene and obtain a conductance of about two quantum units corresponding to two bands crossing the Fermi surface. We then compute the current through a benzene molecule attached to two graphene contacts and find only a very weak current because of the disruption of the π conjugation by the covalent bond between the benzene and the graphene. In all cases we find that very strong or weak probe couplings suppress the current.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In acoustic instruments, the controller and the sound producing system often are one and the same object. If virtualacoustic instruments are to be designed to not only simulate the vibrational behaviour of a real-world counterpart but also to inherit much of its interface dynamics, it would make sense that the physical form of the controller is similar to that of the emulated instrument. The specific physical model configuration discussed here reconnects a (silent) string controller with a modal synthesis string resonator across the real and virtual domains by direct routing of excitation signals and model parameters. The excitation signals are estimated in their original force-like form via careful calibration of the sensor, making use of adaptive filtering techniques to design an appropriate inverse filter. In addition, the excitation position is estimated from sensors mounted under the legs of the bridges on either end of the prototype string controller. The proposed methodology is explained and exemplified with preliminary results obtained with a number of off-line experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The underlying mechanisms for the nucleation of carbon nanotubes as well as their helicity, remain elusive. Here, using van der Waals dispersion force calculations implemented within density functional theory, we study the cap formation, believed to be responsible for the chirality of surface-catalyzed carbon nanotubes. We find the energetics associated with growth along different facets to be independent of the surface orientation and that the growth across an edge along the axis of the metal particle leads to a perfect honeycomb lattice in a curved geometry. The formation of defects in the graphene matrix, which bend the carbon plane, requires that two or more graphene embryos with significantly different growth axis merge. Such scenario is only possible at the front- or back-end of the metal particle where growth symmetry is broken. The graphene embryos reconstruct their hexagonal structure into pentagons, heptagons, and octagons counterpart to accommodate the tube curvature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of their extraordinary structural and electrical properties, two dimensional materials are currently being pursued for applications such as thin-film transistors and integrated circuit. One of the main challenges that still needs to be overcome for these applications is the fabrication of air-stable transistors with industry-compatible complementary metal oxide semiconductor (CMOS) technology. In this work, we experimentally demonstrate a novel high performance air-stable WSe2 CMOS technology with almost ideal voltage transfer characteristic, full logic swing and high noise margin with different supply voltages. More importantly, the inverter shows large voltage gain (~38) and small static power (Pico-Watts), paving the way for low power electronic system in 2D materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gate-tunable two-dimensional (2D) materials-based quantum capacitors (QCs) and van der Waals heterostructures involve tuning transport or optoelectronic characteristics by the field effect. Recent studies have attributed the observed gate-tunable characteristics to the change of the Fermi level in the first 2D layer adjacent to the dielectrics, whereas the penetration of the field effect through the one-molecule-thick material is often ignored or oversimplified. Here, we present a multiscale theoretical approach that combines first-principles electronic structure calculations and the Poisson–Boltzmann equation methods to model penetration of the field effect through graphene in a metal–oxide–graphene–semiconductor (MOGS) QC, including quantifying the degree of “transparency” for graphene two-dimensional electron gas (2DEG) to an electric displacement field. We find that the space charge density in the semiconductor layer can be modulated by gating in a nonlinear manner, forming an accumulation or inversion layer at the semiconductor/graphene interface. The degree of transparency is determined by the combined effect of graphene quantum capacitance and the semiconductor capacitance, which allows us to predict the ranking for a variety of monolayer 2D materials according to their transparency to an electric displacement field as follows: graphene > silicene > germanene > WS2 > WTe2 > WSe2 > MoS2 > phosphorene > MoSe2 > MoTe2, when the majority carrier is electron. Our findings reveal a general picture of operation modes and design rules for the 2D-materials-based QCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional (2D) hexagonal boron nitride (BN) nanosheets are excellent dielectric substrate for graphene, molybdenum disulfide, and many other 2D nanomaterial-based electronic and photonic devices. To optimize the performance of these 2D devices, it is essential to understand the dielectric screening properties of BN nanosheets as a function of the thickness. Here, electric force microscopy along with theoretical calculations based on both state-of-the-art first-principles calculations with van der Waals interactions under consideration, and nonlinear Thomas-Fermi theory models are used to investigate the dielectric screening in high-quality BN nanosheets of different thicknesses. It is found that atomically thin BN nanosheets are less effective in electric field screening, but the screening capability of BN shows a relatively weak dependence on the layer thickness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp$^3$-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the $d$ states of the metal atom and the defect levels associated with an unreconstructed D$_{3h}$ carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 $\mu_B$ is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.