853 resultados para graph theory, functional connectivity, rs-fMRI, nocturnal frontal lobe epilepsy (NFLE)
Resumo:
Purpose: This study used magnetic resonance spectroscopy (MRS) to examine metabolite abnormalities in the temporal and frontal lobe of patients with temporal lobe epilepsy (TLE) of differing severity. Methods: We investigated myoinositol in TLE by using short-echo MRS in 34 TLE patients [26 late onset (LO-TLE), eight hippocampal sclerosis (HS-TLE)], and 16 controls. Single-voxel short-echo (35 ms) MR spectra of temporal and frontal lobes were acquired at 1.5 T and analyzed by using LCModel. Results: The temporal lobe ipsilateral to seizure origin in HS-TLE, but not LO-TLE, had reduced N-acetylaspartate (NA) and elevated myoinositol (MI; HS-TLE NA, 7.8 ± 1.9 mM, control NA, 9.2 ± 1.3 mM; p < 0.05; HS-TLE MI, 6.1 ± 1.6 mM, control mI 4.9 ± 0.8 mM, p< 0.05). Frontal lobe MI was low in both patient groups (LO-TLE, 4.3 ± 0.8 mM; p < 0.05; HS-TLE, 3.6 ±.05 mM; p < 0.001; controls, 4.8 ± 0.5 mM). Ipsilateral frontal lobes had lower MI (3.8 ± 0.7 mM; p < 0.01) than contralateral frontal lobes (4.3 ± 0.8 mM; p < 0.05). Conclusions: MI changes may distinguish between the seizure focus, where MI is increased, and areas of seizure spread where MI is decreased.
Resumo:
We review studies of Nelson's (1976) Modified Card Sorting Test (MCST) that have examined the performance of subjects with frontal lobe dysfunction. Six studies investigated the performance of normal controls and patients with frontal lobe dysfunction, whereas four studies compared the performance of frontal and nonfrontal patients. One further study compared the performance of amnesic patients both on the MCST and on the original Wisconsin Card Sorting Test (WCST). Evidence regarding the MCST's differential sensitivity to frontal lobe dysfunction is weak, as is the evidence regarding the equivalence of the MCST and WCST. It is likely that the MCST is an altogether different test from the standard version. In the absence of proper normative data for the MCST, we provide a table of scores derived from the control groups of various studies. Given the paucity of evidence, further research is required before the MCST can be recommended for use as a marker of frontal lobe dysfunction.
Resumo:
The concept of vascular cognitive impairment (VCI) covers a wide spectrum of cognitive dysfunctions related to cerebrovascular disease. Among the pathophysiological determinants of VCI are cerebral stroke, white matter lesions and brain atrophy, which are known to be important risk factors for dementia. However, the specific mechanisms behind the brain abnormalities and cognitive decline are still poorly understood. The present study investigated the neuropsychological correlates of particular magnetic resonance imaging (MRI) findings, namely, medial temporal lobe atrophy (MTA), white matter hyperintensities (WMH), general cortical atrophy and corpus callosum (CC) atrophy in subjects with cerebrovascular disease. Furthermore, the cognitive profile of subcortical ischaemic vascular disease (SIVD) was examined. This study was conducted as part of two large multidisciplinary study projects, the Helsinki Stroke Aging Memory (SAM) Study and the multinational Leukoaraiosis and Disability (LADIS) Study. The SAM cohort consisted of 486 patients, between 55 and 85 years old, with ischaemic stroke from the Helsinki University Hospital, Helsinki, Finland. The LADIS Study included a mixed sample of subjects (n=639) with age-related WMH, between 65 and 84 years old, gathered from 11 centres around Europe. Both studies included comprehensive clinical and neuropsychological assessments and detailed brain MRI. The relationships between the MRI findings and the neuropsychological test performance were analysed by controlling for relevant confounding factors such as age, education and other coexisting brain lesions. The results revealed that in elderly patients with ischaemic stroke, moderate to severe MTA was specifically related to impairment of memory and visuospatial functions, but mild MTA had no clinical relevance. Instead, WMH were primarily associated with executive deficits and mental slowing. These deficits mediated the relationship between WMH and other, secondary cognitive deficits. Cognitive decline was best predicted by the overall degree of WMH, whereas the independent contribution of regional WMH measures was low. Executive deficits were the most prominent cognitive characteristic in SIVD. Compared to other stroke patients, the patients with SIVD also presented more severe memory deficits, which were related to MTA. The cognitive decline in SIVD occurred independently of depressive symptoms and, relative to healthy control subjects, it was substantial in severity. In stroke patients, general cortical atrophy also turned out to be a strong predictor of cognitive decline in a wide range of cognitive domains. Moreover, in elderly subjects with WMH, overall CC atrophy was related to reduction in mental speed, while anterior CC atrophy was independently associated with frontal lobe-mediated executive functions and attention. The present study provides cross-sectional evidence for the involvement of WMH, MTA, general cortical atrophy and CC atrophy in VCI. The results suggest that there are multifaceted pathophysiological mechanisms behind VCI in the elderly, including both vascular ischaemic lesions and neurodegenerative changes. The different pathological changes are highly interrelated processes and together they may produce cumulative effects on cognitive decline.
Resumo:
The prefrontal cortex (PFC), located in the anterior region of the frontal lobe, is considered to have several key roles in higher cognitive and executive functions. In general, the PFC can be seen as a coordinator of thought and action allowing subjects to behave in a goal-directed manner. Due to its anatomical connections with a variety of cortical and subcortical structures, several neurotransmitters, including dopamine, are involved in the regulation of PFC activity. In general, the majority of released dopamine is cleared by the dopamine transporter (DAT). In the PFC however, the number of presynaptic DAT is diminished, emphasizing the relative importance of catechol-O-methyltransferase (COMT) in dopamine metabolism. As a result, the role of COMT in the etiology of psychotic disorders is under constant debate. The present study investigated the role of COMT in prefrontal cortical dopamine metabolism by different neurochemical methods in COMT knockout (COMT-KO) mice. Pharmacological tools to inhibit other dopamine clearing mechanisms were also used for a more comprehensive and collective picture. In addition, this study investigated how a lack of the soluble (S-) COMT isoform affects the total COMT activity as well as the pharmacokinetics of orally administered L-dopa using mutant mice expressing only the membrane-bound (MB-) COMT isoform. Also the role of COMT in striatal and accumbal dopamine turnover during Δ9-tetrahydrocannabinol (THC) challenge was studied. We found markedly increased basal dopamine concentrations in the PFC, but not the striatum or nucleus accumbens (NAcc), of mice lacking COMT. Pharmacological inhibition of the noradrenaline transporter (NET) and monoamine oxidase (MAO) elevated prefrontal cortical dopamine levels several-fold, whereas inhibition of DAT did not. The lack of COMT doubled the dopamine raising effects of NET and MAO inhibition. No compensatory expression of either DAT or NET was found in the COMT-KO mice. The lack of S-COMT decreased the total COMT activity by 50-70 % and modified dopamine transmission and the pharmacokinetics of exogenous Ldopa in a sex and tissue specific manner. Finally, we found that subsequent tolcapone and THC increased dopamine levels in the NAcc, but not in the striatum. Conclusively, this study presents neurochemical evidence for the important role of COMT in the PFC and shows that COMT is responsible for about half of prefrontal cortical dopamine metabolism. This study also highlights the previously underestimated proportional role of MB-COMT and supports the clinical evidence of a gene x environment interaction between COMT and cannabis.
Resumo:
O objetivo deste estudo foi investigar os mecanismos de variabilidade da pressão arterial sistólica batimento-a-batimento através da análise espectral do componente de baixa frequência da variabilidade da pressão arterial sistólica, de medidas de velocidade da onda de pulso e de análise da pressão de incremento em idosos normotensos e hipertensos em tratamento anti-hipertensivo. Adicionalmente, investigamos a associação da variabilidade da pressão arterial com a espessura médio-intimal carotídea. Também investigamos a associação entre variabilidade da pressão arterial batimento-a-batimento e da frequência cardíaca com desempenho cognitivo. A pressão arterial foi medida continuamente através de fotopletismografia em posição supina e semi-ereta passiva. A variabilidade da pressão arterial foi estimada pelo desvio padrão das medidas batimento-a-batimento. Medidas de velocidade de onda de pulso, de pressão de incremento e ultrassonografia das artérias carótidas para medidas da espessura médio-intimal foram realizadas. O componente de baixa frequência da variabilidade da pressão arterial sistólica em posição supina e semi-ereta apresentou uma associação positiva independente coma variabilidade nos modelos de regressão linear múltipla ajustado pela velocidade de onda de pulso ou pela pressão de incremento.O componente de baixa frequência do barorreflexo em posição supina apresentou uma associação negativa independente com a variabilidade da pressão arterial sistólica e nos mesmos modelos. Não foi demonstrada associação entre a variabilidade da pressão arterial sistólica com espessura médio-intimal das artérias carótidas. Não foi demonstrada associação da variabilidade da pressão arterial sistólica batimento-a-batimento ou da frequência cardíaca com desempenho cognitivo global. Foi demonstrada associação positiva e independente do componente de baixa frequência do espectro de variabilidade da pressão arterial e da frequência cardíaca com domínios cognitivos relacionados ao lobo frontal. Em conclusão, a modulação simpática do tono vascular arterial, a função vascular miogênica e a desregulação do barorreflexo correlacionam-se com a variabilidade da pressão arterial batimento-a-batimento, o que não foi observado em relação `a rigidez arterial,pressão de incremento eespessura médio-intimal carotídea. A variabilidade da pressão arterial sistólica e da frequência cardíaca não apresentaram correlação com o desempenho cognitivo global, mas apresentaram associação positiva e independente com escores de função executiva.
Resumo:
Self-regulation has recently become an important topic in cognitive and developmental domain. According to previous theories and experimental studies, it is shown that self-regulation consist of both a personality (or social) aspect and a behavioral cognitive aspect of psychology. Self-regulation can be divided into self-regulation personality and self-regulation ability. In the present study researches have been carried out from two perspectives: child development and individual differences. We are eager to explore the characteristics of self-regulation in terms of human cognitive development. In the present study, we chose two groups of early adolescences one with high intelligence and the other with normal intelligence. In Study One Questionnaires were used to compare whether the highly intelligent group had had better self-regulation personality than the normal group. In Study Two experimental psychology tasks were used to compare whether highly intelligent children had had better self-regulation cognitive abilities than their normal peers. Finally, in Study Three we combined the results of Study One and Study Two to further explore the neural mechanisms for highly intelligent children with respect to their good self-regulation abilities. Some main results and conclusions are as follows: (1) Questionnaire results showed that highly intelligent children had better self-regulation personalities, and they got higher scores on the personalities related to self-regulation such as, self-reliance, stability, rule-consciousness. They also got higher scores on self-consciousness which meant that they could know their own self better than the normal children. (2) Among the three levels of cognitive difficulties in self-regulation abilities, the highly intelligent children had faster reaction speed than normal children in the primary self-regulation tasks. In the intermediate self-regulation tasks, highly intelligent children’s inhibition processing and executive processing were both better than their normal peers. In the advanced self-regulation tasks, highly intelligent children again had faster reaction speed and more reaction accuracy than their normal peers when facing with conflict and inconsistency experimental conditions,. Regression model’s results showed that primary and advanced self-regulation abilites had larger predictive power than intermediate self-regualation ability. (3) Our neural experiments showed that highly intelligent children had more efficient neural automatic processing ability than normal children. They also had better, faster and larger neural reaction to novel stimuli under pre-attentional condition which made good and firm neural basis for self-regualation. Highly intelligent children had more mature frontal lobe and pariental functions for inhibition processing and executive processing. P3 component in ERP was closely related to executive processing which mainly activated pariental function. There were two time-periods for inhibition processing—first it was the pariental function and later it was the coordination function of frontal and pariental lobes. While conflict control task had pariental N2 and frontal-pariental P3 neural sources, highly intelligent children had much smaller N2 and shorter P3 latency than normal children. Inconsistency conditions induced larger N2 than conditions without inconsistency, and conditions without inconsistency (or Conflict) induced higher P3 amplitudes than with Inconsistency (or Conflict) conditions. In conclusion, the healthy development of self-regulation was very important for children’s personality and cognition maturity, and self-regulation had its own specific characteristics in ways of presentation and ways of development. Better understanding of self-regulation can further help the exploration of the nature of human intelligence and consciousness.
Resumo:
By now, there are still many unsolved questions about associative priming. This study used process dissociation paradigm, perceptual identification task and speeded naming task,together with near infrared spectroscopy, to investigate priming for new associations and its brain mechanisms systematically. The results showed there was interaction between level of processing and unitization in affecting associative priming. When comparing with shallow encoding unrelated word pairs, the activation of both sides of prefrontal lobe was stronger, which suggested prefrontal lobe had relations with memory for new associations. Medial temporal lobe and frontal lobe lesioned patients were tested respectively using methods of perceptual identification task and speeded naming task. Both brain regions participated in associative priming. Medial temporal lobe mediated unitization between unrelated items. Frontal lobe contributed to priming for new associations by elaborative processing, inhibiting irrelevant information, selective attending to tasks, and establishing some effective strategies. In addition, normal subjects needed to aware the relationship between study and test to form associative priming and densely memory deficit patients could not form memory for new associations. In conclusion, the results further demonstrated that perceptual representation system could not support priming for new associations alone. Medial temporal lobe and frontal lobe played roles in priming for new associations, and there was some relation between associative priming and conscious retrieval processing.
Resumo:
BACKGROUND: Variation in brain structure is both genetically and environmentally influenced. The question about potential differences in brain anatomy across populations of differing race and ethnicity remains a controversial issue. There are few studies specifically examining racial or ethnic differences and also few studies that test for race-related differences in context of other neuropsychiatric research, possibly due to the underrepresentation of ethnic minorities in clinical research. It is within this context that we conducted a secondary data analysis examining volumetric MRI data from healthy participants and compared the volumes of the amygdala, hippocampus, lateral ventricles, caudate nucleus, orbitofrontal cortex (OFC) and total cerebral volume between Caucasian and African-American participants. We discuss the importance of this finding in context of neuroimaging methodology, but also the need for improved recruitment of African Americans in clinical research and its broader implications for a better understanding of the neural basis of neuropsychiatric disorders. METHODOLOGY/PRINCIPAL FINDINGS: This was a case control study in the setting of an academic medical center outpatient service. Participants consisted of 44 Caucasians and 33 ethnic minorities. The following volumetric data were obtained: amygdala, hippocampus, lateral ventricles, caudate nucleus, orbitofrontal cortex (OFC) and total cerebrum. Each participant completed a 1.5 T magnetic resonance imaging (MRI). Our primary finding in analyses of brain subregions was that when compared to Caucasians, African Americans exhibited larger left OFC volumes (F (1,68) = 7.50, p = 0.008). CONCLUSIONS: The biological implications of our findings are unclear as we do not know what factors may be contributing to these observed differences. However, this study raises several questions that have important implications for the future of neuropsychiatric research.
Resumo:
It is essential to keep track of the movements we make, and one way to do that is to monitor correlates, or corollary discharges, of neuronal movement commands. We hypothesized that a previously identified pathway from brainstem to frontal cortex might carry corollary discharge signals. We found that neuronal activity in this pathway encodes upcoming eye movements and that inactivating the pathway impairs sequential eye movements consistent with loss of corollary discharge without affecting single eye movements. These results identify a pathway in the brain of the primate Macaca mulatta that conveys corollary discharge signals.
Resumo:
Latent inhibition (LI) is a measure of reduced learning about a stimulus to which there has been prior exposure without any consequence. It therefore requires a comparison between a pre-exposed (PE) and a non-pre-exposed (NPE) condition. Since, in animals, LI is disrupted by amphetamines and enhanced by antipsychotics, LI disruption has been proposed as a measure of the characteristic attentional deficit in schizophrenia: the inability to ignore irrelevant stimuli. The findings in humans are, however, inconsistent. In particular, a recent investigation suggested that since haloperidol disrupted LI in healthy volunteers, and LI was normal in non-medicated patients with schizophrenia, the previous findings in schizophrenic patients were entirely due to the negative effects of their medication on LI (Williams et al., 1998). We conducted two studies of antipsychotic drug effects on auditory LI using a within-subject, parallel group design in healthy volunteers. In the first of these, single doses of haloperidol (1 mg. i.v.) were compared with paroxetine (20 mg p.o.) and placebo, and in the second, chlorpromazine (100 mg p.o.) was compared with lorazepam (2 mg. p.o.) and placebo. Eye movements, neuropsychological test performance (spatial working memory (SWM), Tower of London and intra/extra dimensional shift, from the CANTAB test battery) and visual analogue rating scales, were also included as other measures of attention and frontal lobe function. Haloperidol was associated with a non-significant reduction in LI scores, and dysphoria/akathisia (Barnes Akathisia Rating Scale) in three-quarters of the subjects. The LI finding may be explained by increased distractibility which was indicated by an increase in antisaccade directional errors in this group. In contrast, LI was significantly increased by chlorpromazine but not by an equally sedative dose of lorazepam (both drugs causing marked decreases in peak saccadic velocity). Paroxetine had no effect on LI, eye movements or CANTAB neuropsychological test performance. Haloperidol was associated with impaired SWM, which correlated with the degree of dysphoria/akathisia, but no other drug effects on CANTAB measures were detected. We conclude that the effect of antipsychotics on LI is both modality and pharmacologically dependent and that further research using a wider range of antipsychotic compounds is necessary to clarify the cognitive effects of these drugs, and to determine whether there are important differences between them.
Resumo:
Objectives: It is increasingly important to develop predictors of treatment response and outcome in schizophrenia. Neuropsychological impairments, particularly those reflecting frontal lobe function, appear to predict poor outcome. Eye movement abnormalities probably also reflect frontal lobe deficits. We wished to see if these two aspects of schizophrenia were correlated and whether they could distinguish a treatment resistant from a treatment responsive group. Methods: Ten treatment resistant schizophrenic patients were compared with ten treatment responsive patients on three eye movement paradigms (reflexive saccades, antisaccades and smooth pursuit), clinical psychopathology (BPRS, SANS and CGI) and a neuropsychological test battery designed to detect frontal lobe dysfunction. Ten aged-matched controls also carried out the eye movement tasks. Results: Both treatment responsive (p = 0.038) and treatment resistant (p = 0.007) patients differed significantly from controls on the antisaccade task. The treatment resistant group had a higher error rate than the treatment responsive group, but the difference was not statistically significant. Similar poor neuropsychological test performance was found in both groups. Conclusions: To demonstrate the biological differences characteristic of treatment resistance, larger sample sizes and wider differences in outcome between the two groups are necessary.
Resumo:
This study explored the pattern of memory functioning in 58 patients with chronic schizophrenia and compared their performance with 53 normal controls. Multiple domains of memory were assessed, including verbal and nonverbal memory span, verbal and non-verbal paired associate learning, verbal and visual long-term memory, spatial and non-spatial conditional associative learning, recognition memory and memory for temporal order. Consistent with previous studies, substantial deficits in long-term memory were observed, with relative preservation of memory span. Memory for temporal order and recognition memory was intact, although significant deficits were observed on the conditional associative learning tasks. There was no evidence of lateralized memory impairment. In these respects, the pattern of memory impairment in schizophrenia is more similar in nature to that found in patients with memory dysfunction following mesiotemporal lobe lesions, rather than that associated with focal frontal lobe damage. (C) 1999 Elsevier Science B.V. All rights reserved.
Novel Metabolite Biomarkers of Huntington's Disease As Detected by High-Resolution Mass Spectrometry
Resumo:
Huntington's disease (HD) is a fatal autosomal-dominant neurodegenerative disorder that affects approximately 3-10 people per 100 000 in the Western world. The median age of onset is 40 years, with death typically following 15-20 years later. In this study, we biochemically profiled post-mortem frontal lobe and striatum from HD sufferers (n = 14) and compared their profiles with controls (n = 14). LC-LTQ-Orbitrap-MS detected a total of 5579 and 5880 features for frontal lobe and striatum, respectively. An ROC curve combining two spectral features from frontal lobe had an AUC value of 0.916 (0.794 to 1.000) and following statistical cross-validation had an 83% predictive accuracy for HD. Similarly, two striatum biomarkers gave an ROC AUC of 0.935 (0.806 to 1.000) and after statistical cross-validation predicted HD with 91.8% accuracy. A range of metabolite disturbances were evident including but-2-enoic acid and uric acid, which were altered in both frontal lobe and striatum. A total of seven biochemical pathways (three in frontal lobe and four in striatum) were significantly altered as a result of HD. This study highlights the utility of high-resolution metabolomics for the study of HD. Further characterization of the brain metabolome could lead to the identification of new biomarkers and novel treatment strategies for HD.
Resumo:
Tese de mestrado, Ciências do Sono, Faculdade de Medicina, Universidade de Lisboa, 2016