843 resultados para general strain theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider arbitrary U (1) charged matter non-minimally coupled to the self-dual field in d = 2 + 1. The coupling includes a linear and a rather general quadratic term in the self-dual field. By using both Lagragian gauge embedding and master action approaches we derive the dual Maxwell Chern-Simons-type model and show the classical equivalence between the two theories. At the quantum level the master action approach in general requires the addition of an awkward extra term to the Maxwell Chern-Simons-type theory. Only in the case of a linear coupling in the self-dual field can the extra term be dropped and we are able to establish the quantum equivalence of gauge invariant correlation functions in both theories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, we discuss the steady state characteristics of a non-intimate metal-insulator Schottky barrier. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We present analytical expressions for the electrical potential, field, thickness of depletion region, capacitance, and charge accumulated in the depletion region. We also discuss ln I versus V(ap) data. Finally, we compare the characteristics in three cases: (i) impurity states at only a single energy level; (ii) uniform energy distribution of impurity states; and (iii) exponential energy distribution of impurity states.In general, the electrical characteristics of Schottky barriers and metal-insulator-metal structures with Schottky barriers depend strongly on the energy distribution of impurity states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a strain gauge-based sensor used for measuring finger force. The theory, design, and sensor construction details are presented. It was constructed using metallic strain gauges and a carefully designed structure which has a protection de-vice that impedes the sensor damage when forces higher than 100 N are applied. Its dimensions are suitable for measuring thumb force, but the same design can be used for constructing smaller sensors for other fingers. It is rugged, presents linear response, good repeatability, resolution of 0.3 N, low hysteresis, and sensitivity of 0.12 V/N. It can be useful in rehabilitation engineering, biomechanics, robotics, and medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a semiconductor strain gage tactile transducer. It was designed with the goal of measuring finger forces without affecting the hand dexterity. The transducer structure was manufactured with stainless steel and has small dimensions ( 4 min diameter and I min thickness). It is light and suitable to connect to the finger pads. It has a device that prevents its damage when forces are applied. The semiconductor strain gage was used over due its small size and high sensitivity, although it has high temperature sensitivity. Theory, design and construction details are presented the signal conditioning circuit is very simple because the semiconductor strain gage sensitivity is high. It presents linear response from 0 to 100 N, 0.5 N resolution, fall time of 7.2 ms, good repeatability, and small hysteresis. The semiconductor strain gage transducer has characteristics that can make it very useful in Rehabilitation Engineering, Robotics, and Medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N = 2, d = 5 Yang-Mills - SYM, N = 2, d = 5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N = 2, d = 5, turns out to be the direct product of supergravity and a general gauge group g: G = g circle times <(SU(2, 2/1))over bar>.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, the intimate metal-insulator and metal-oxide-insulator contact are discussed. Further, the steady-state characteristics of metal-oxide-insulator-metal structures are also discussed. Oxide is an insulator with wider energy band gap (about 50 Å thick). A uniform energetic distribution of impurities is considered in addition to impurities at a single energy level inside the surface charge region at the oxide-insulator interface. Analytical expressions are presented for electrical potential, field, thickness of the depletion region, capacitance, and charge accumulated in the surface charge region. The electrical characteristics are compared with reference to relative densities of two types of impurities. ln I is proportional to the square root of applied potential if energetically distributed impurities are relatively important. However, distribution of the electrical potential is quite complicated. In general energetically distributed impurities can considerably change the electrical characteristics of these structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relation between the spin and the mass of an infinite number of particles in a q-deformed dual string theory is studied. For the deformation parameter q a root of unity, in addition to the relation of such values of q with the rational conformal field theory, the Fock space of each oscillator mode in the Fubini-Veneziano operator formulation becomes truncated. Thus, based on general physical grounds, the resulting spin-(mass)2 relation is expected to be below the usual linear trajectory. For such specific values of q, we find that the linear Regge trajectory turns into a square-root trajectory as the mass increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory of vibronic transitions in rare earth compounds is re-examined in the light of a more reliable representation for the ligand field Hamiltonian than the crude electrostatic model. General expressions that take into account the relevant contributions from the forced electric dipole and dynamic coupling mechanisms are derived for the vibronic intensity parameters. These include additional terms, from charge and polarizability gradients, which have not been considered in previous work. Emphasis is given to the relative signs of these various contributions. Under certain approximations these expressions may be conveniently written in terms of accessible ligand field parameters. A comparison with experimental values for the compounds Cs2NaEuCl6 and LiEuF4 is made and satisfactory agreement between theory and experiment is found. A discussion is given on the sensitivity of the calculated intensities to the values of radial integrals, interconfigurational energy differences and ligand field parameters that may be used. Finally, the problem in which a vibronic and an electronic level are in resonance, or near resonance, is analyzed. Suitable expressions to describe the effects of the even-rank components of the vibronic Hamiltonian are obtained. It is found that, depending on the strength of the vibronic interaction and the resonance conditions, the admixture between these two levels may lead to intensities of nearly equal values. © 1995.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relying upon the equivalence between a gauge theory for the translation group and general relativity, a teleparallel version of the original Kaluza-Klein theory is developed. In this model, only the internal space (fiber) turns out to be five dimensional, spacetime being kept always four dimensional. A five-dimensional translational gauge theory is obtained which unifies, in the sense of Kaluza-Klein theories, gravitational and electromagnetic interactions. ©2000 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction of two classes of exact solutions for the most general time-dependent Dirac Hamiltonian in 1+1 dimensions was discussed. The extension of solutions by introduction of a time-dependent mass was elaborated. The possibility of existence of a generalized Lewis-Riesenfeld invariant connected with such solutions was also analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a high senstivity low cost capacitive strain gage sensor. The theory, design, and sensor construction details are presented. It consists of eight capacitive sensors connected in two full bridges. The capacitive strain gage sensor structure was designed in order to produce high sensitivity and low dependence with temperature. By using a simple signal conditioning circuit constituted by a differential amplifier, a band-pass filter, and a precision rectifier the device can measure forces with resolution of 0.009 N and precision of 98.7%. It is rugged, presents linear response, and good repeatability. It presents sensitivity of 8.7 V/N and fall time of 12 ms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.