941 resultados para flow field
Resumo:
The degree to which the lithosphere and mantle are coupled and contribute to surface deformation beneath continental regions remains a fundamental question in the field of geodynamics. Here we use a new approach with a surface deformation field constrained by GPS, geologic, and seismicity data, together with a lithospheric geodynamic model, to solve for tractions inferred to be generated by mantle convection that (1) drive extension within interior Alaska generating southward directed surface motions toward the southern convergent plate boundary, (2) result in accommodation of the relative motions between the Pacific and North America in a comparatively small zone near the plate boundary, and (3) generate the observed convergence within the North American plate interior in the Mackenzie mountains in northwestern Canada. The evidence for deeper mantle influence on surface deformation beneath a continental region suggests that this mechanism may be an important contributing driver to continental plate assemblage and breakup.
Resumo:
An experimental study of plane strain wedge indentation of a model porous brittle solid has been made to understand the effect of indentation parameters on the evolution of the deformation field and the accompanying volume change. A series of high-speed, high-resolution images of the indentation region and simultaneous measurements of load response were captured through the progression of the indentation process. Particle image velocimetry analysis of the images facilitated in situ measurement of the evolution of the resulting plastic zone in terms of incremental material displacement (velocity), strain rate, strain and volume change (e.g., local pore collapse). These measurements revealed initiation and propagation of flow localizations and fractures, as well as enabled estimate of volume changes occurring in the deformation zone. The results were directly compared with theoretical estimates of indentation pressure and deformation zone geometry and were used to validate a modified cavity expansion solution that incorporates effects of volume changes in the plastic zone. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The magnetic field in rapidly rotating dynamos is spatially inhomogeneous. The axial variation of the magnetic field is of particular importance because tall columnar vortices aligned with the rotation axis form at the onset of convection. The classical picture of magnetoconvection with constant or axially varying magnetic fields is that the Rayleigh number and wavenumber at onset decrease appreciably from their non-magnetic values. Nonlinear dynamo simulations show that the axial lengthscale of the self-generated azimuthal magnetic field becomes progressively smaller as we move towards a rapidly rotating regime. With a small-scale field, however, the magnetic control of convection is different from that in previous studies with a uniform or large-scale field. This study looks at the competing viscous and magnetic mode instabilities when the Ekman number E (ratio of viscous to Coriolis forces) is small. As the applied magnetic field strength (measured by the Elsasser number Lambda) increases, the critical Rayleigh number for onset of convection initially increases in a viscous branch, reaches an apex where both viscous and magnetic instabilities co-exist, and then falls in the magnetic branch. The magnetic mode of onset is notable for its dramatic suppression of convection in the bulk of the fluid layer where the field is weak. The viscous-magnetic mode transition occurs at Lambda similar to 1, which implies that small-scale convection can exist at field strengths higher than previously thought. In spherical shell dynamos with basal heating, convection near the tangent cylinder is likely to be in the magnetic mode. The wavenumber of convection is only slightly reduced by the self-generated magnetic field at Lambda similar to 1, in agreement with previous planetary dynamo models. The back reaction of the magnetic field on the flow is, however, visible in the difference in kinetic helicity between cyclonic and anticyclonic vortices.
Resumo:
Tin oxide (SnO2) nanowires are synthesized by Au catalyzed chemical vapor deposition of Sn and C mixture at 900 degrees C by employing a continuous flow of Ar: O-2 (10:1) for an hour. X-ray diffraction and Raman spectroscopy studies indicate that the as-grown SnO2 nanowires are crystalline in nature with tetragonal rutile phase. Electron microscopy studies reveal towards high aspect ratio of nanowires. The field emission studies show that SnO2 nanowires grown on Si substrate exhibit low turn-on field of 1.75 V/mu m (at 0.1 mu A/cm(2)) and long-term emission stability over a period of more than 50 h with a current density of 4 mu A/cm(2) at a constant electric field of 2.25 V/mu m. Hardly any considerable degradation in the emission current is noticed even after 50 h which may be attributed to the high crystallinity of SnO2 nanowires. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Crowd flow segmentation is an important step in many video surveillance tasks. In this work, we propose an algorithm for segmenting flows in H.264 compressed videos in a completely unsupervised manner. Our algorithm works on motion vectors which can be obtained by partially decoding the compressed video without extracting any additional features. Our approach is based on modelling the motion vector field as a Conditional Random Field (CRF) and obtaining oriented motion segments by finding the optimal labelling which minimises the global energy of CRF. These oriented motion segments are recursively merged based on gradient across their boundaries to obtain the final flow segments. This work in compressed domain can be easily extended to pixel domain by substituting motion vectors with motion based features like optical flow. The proposed algorithm is experimentally evaluated on a standard crowd flow dataset and its superior performance in both accuracy and computational time are demonstrated through quantitative results.
Resumo:
The magnetic damping effect of the non-uniform magnetic field on the floating-zone crystal growth process in microgravity is studied by numerical simulation. The results show that the non-uniform magnetic field with designed configuration can effectively reduce the flow near the free surface and then in the melt zone. At the same time, the designed magnetic field can improve the impurity concentration non-uniformity along the solidification interface. The primary principles of the magnetic field configuration design are also discussed.
Resumo:
In this paper, a pressure correction algorithm for computing incompressible flows is modified and implemented on unstructured Chimera grid. Schwarz method is used to couple the solutions of different sub-domains. A new interpolation to ensure consistency between primary variables and auxiliary variables is proposed. Other important issues such as global mass conservation and order of accuracy in the interpolations are also discussed. Two numerical simulations are successfully performed. They include one steady case, the lid-driven cavity and one unsteady case, the flow around a circular cylinder. The results demonstrate a very good performance of the proposed scheme on unstructured Chimera grids. It prevents the decoupling of pressure field in the overlapping region and requires only little modification to the existing unstructured Navier–Stokes (NS) solver. The numerical experiments show the reliability and potential of this method in applying to practical problems.
Resumo:
The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat how direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.
Resumo:
The magnetic fields produced by electrical coils are designed for damping the the thermocapillary convection in a floating half-zone in microgravity. The fields are designed specially to reduce the flow near the free surface and then in the melt zone by adjusting the longitudinal coil positions close to the melt zone. The effects of the designed magnetic fields on reducing the flow velocity and temperature distribution non-uniformity in the melt zone are stronger than those of the case of an uniform longitudinal magnetic field obtained by numerical simulation, particularly at the melt-rod interface. It brings fundamental insights into the heat and mass transfer control at the solidification interface by the magnetic field design for crystal growth by the floating full-zone method.
Resumo:
There are many fault block fields in China. A fault block field consists of fault pools. The small fault pools can be viewed as the closed circle reservoirs in some case. In order to know the pressure change of the developed formation and provide the formation data for developing the fault block fields reasonably, the transient flow should be researched. In this paper, we use the automatic mesh generation technology and the finite element method to solve the transient flow problem for the well located in the closed circle reservoir, especially for the well located in an arbitrary position in the closed circle reservoir. The pressure diffusion process is visualized and the well-location factor concept is first proposed in this paper. The typical curves of pressure vs time for the well with different well-location factors are presented. By comparing numerical results with the analytical solutions of the well located in the center of the closed circle reservoir, the numerical method is verified.
Resumo:
A large-eddy simulation with transitional structure function(TSF) subgrid model we previously proposed was performed to investigate the turbulent flow with thermal influence over an inhomogeneous canopy, which was represented as alternative large and small roughness elements. The aerodynamic and thermodynamic effects of the presence of a layer of large roughness elements were modelled by adding a drag term to the three-dimensional Navier-Stokes equations and a heat source/sink term to the scalar equation, respectively. The layer of small roughness elements was simply treated using the method as described in paper (Moeng 1984, J. Atmos Sci. 41, 2052-2062) for homogeneous rough surface. The horizontally averaged statistics such as mean vertical profiles of wind velocity, air temperature, et al., are in reasonable agreement with Gao et al.(1989, Boundary layer meteorol. 47, 349-377) field observation (homogeneous canopy). Not surprisingly, the calculated instantaneous velocity and temperature fields show that the roughness elements considerably changed the turbulent structure within the canopy. The adjustment of the mean vertical profiles of velocity and temperature was studied, which was found qualitatively comparable with Belcher et al. (2003, J Fluid Mech. 488, 369-398)'s theoretical results. The urban heat island(UHI) was investigated imposing heat source in the region of large roughness elements. An elevated inversion layer, a phenomenon often observed in the urban area (Sang et al., J Wind Eng. Ind. Aesodyn. 87, 243-258)'s was successfully simulated above the canopy. The cool island(CI) was also investigated imposing heat sink to simply model the evaporation of plant canopy. An inversion layer was found very stable and robust within the canopy.
Resumo:
A set of numerical analyses for momentum and heat transfer For a 3 in. (0.075 m) diameter Liquid Encapsulant Czochralski (LEC) growth of single-crystal GaAs with or without all axial magnetic field was carried Out using the finite-element method. The analyses assume a pseudosteady axisymmetric state with laminar floats. Convective and conductive heat transfers. radiative heat transfer between diffuse surfaces and the Navier-Stokes equations for both melt and encapsulant and electric current stream function equations Cor melt and crystal Lire considered together and solved simultaneously. The effect of the thickness of encapsulant. the imposed magnetic field strength as well as the rotation rate of crystal and crucible on the flow and heat transfer were investigated. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
We present results on the stability of compressible inviscid swirling flows in an annular duct. Such flows are present in aeroengines, for example in the by-pass duct, and there are also similar flows in many aeroacoustic or aeronautical applications. The linearised Euler equations have a ('critical layer') singularity associated with pure convection of the unsteady disturbance by the mean flow, and we focus our attention on this region of the spectrum. By considering the critical layer singularity, we identify the continuous spectrum of the problem and describe how it contributes to the unsteady field. We find a very generic family of instability modes near to the continuous spectrum, whose eigenvalue wavenumbers form an infinite set and accumulate to a point in the complex plane. We study this accumulation process asymptotically, and find conditions on the flow to support such instabilities. It is also found that the continuous spectrum can cause a new type of instability, leading to algebraic growth with an exponent determined by the mean flow, given in the analysis. The exponent of algebraic growth can be arbitrarily large. Numerical demonstrations of the continuous spectrum instability, and also the modal instabilities are presented.
Resumo:
A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.
Resumo:
The velocity distribution between two sidewalls is; M-shaped for the MHD channel flows with rectangular cross section and thin conducting walls in a strong transverse magnetic field. Assume that the dimensionless numbers R(m) much less than 1, M, N much greater than 1, and sigma