925 resultados para flanking sequence
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A semi-nested reverse transcription-polymerase chain reaction (Semi-N-RT-PCR) was developed and used to detect the S glycoprotein gene of infectious bronchitis virus (IBV) strains and to discriminate H120 vaccine strain from other strains. Viral RNA was extracted from the allantoic fluid of chicken embryos and from tissues of chickens experimentally infected with different strains of IBV. Amplification and identification of the viral RNA was performed using two sets of primers complementary to a region of the S glycoprotein gene in the Semi-N-RT-PCR assay. The pair of primers used in the first PCR consisted of universal oligonucleotides flanking a more variable region of S1-S2 gene. The second primer pair was used in the Semi-N-RT-PCR and was comprised of one of the primers from the first universal pair together with either another universal internal oligolucleotide or a oligonucleotide sequence specific for the H120 strain of IBV. The universal primers detected all reference IBV strains and field isolates tested herein. The Semi-N-RT-PCR had high sensitivity and specificity, and was able to differentiate the H120 vaccine strain from other reference IBV strains; including M41 strain. All tissue samples collected from chickens experimentally infected with H120 or M41 strains were positive in the semi-nested RT-PCR using universal primers, while only the H120-infected tissue samples were amplified by the set of primers containing the H120-oligonucleotide. In conclusion, the ability of Semi-N-RT-PCR to detect distinct IBV strains and preliminarily discriminate the vaccine strain (H120) closes a diagnostic gap and offers the opportunity to use comprehensive PCR procedures for the IBV diagnosis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Resumo:
open reading frame expressed sequences tags (ORESTES) differ from conventional ESTs by providing sequence data from the central protein coding portion of transcripts. We generated a total of 696,745 ORESTES sequences from 24 human tissues and used a subset of the data that correspond to a set of 15,095 full-length mRNAs as a means of assessing the efficiency of the strategy and its potential contribution to the definition of the human transcriptome. We estimate that ORESTES sampled over 80% of all highly and moderately expressed, and between 40% and 50% of rarely expressed, human genes. In our most thoroughly sequenced tissue, the breast, the 130,000 ORESTES generated are derived from transcripts from an estimated 70% of all genes expressed in that tissue, with an equally efficient representation of both highly and poorly expressed genes. In this respect, we find that the capacity of the ORESTES strategy both for gene discovery and shotgun transcript sequence generation significantly exceeds that of conventional ESTs. The distribution of ORESTES is such that many human transcripts are now represented by a scaffold of partial sequences distributed along the length of each gene product. The experimental joining of the scaffold components, by reverse transcription-PCR, represents a direct route to transcript finishing that may represent a useful alternative to full-length cDNA cloning.
Resumo:
The main goal of our research was to search for SSRs in the Eucalyptus EST FORESTs database (using a software for mining SSR-motifs). With this objective, we created a database for cataloging Eucalyptus EST-derived SSRs, and developed a bioinformatics tool, named Satellyptus, for finding and analyzing microsatellites in the Eucalyptus EST database. The search for microsatellites in the FORESTs database containing 71,115 Eucalyptus EST sequences (52.09 Mb) revealed 20,530 SSRs in 15,621 ESTs. The SSR abundance detected on the Eucalyptus ESTs database (29% or one microsatellite every four sequences) is considered very high for plants. Amongst the categories of SSR motifs, the dimeric (37%) and trimeric ones (33%) predominated. The AG/CT motif was the most frequent (35.15%) followed by the trimeric CCG/CGG (12.81%). From a random sample of 1,217 sequences, 343 microsatellites in 265 SSR-containing sequences were identified. Approximately 48% of these ESTs containing microsatellites were homologous to proteins with known biological function. Most of the microsatellites detected in Eucalyptus ESTs were positioned at either the 5 or 3 end. Our next priority involves the design of flanking primers for codominant SSR loci, which could lead to the development of a set of microsatellite-based markers suitable for marker-assisted Eucalyptus breeding programs.