994 resultados para experimental induction
Resumo:
Background and objective: Vascular endothelial growth factor (VEGF) is known to increase vascular permeability and promote angiogenesis. It is expressed in most types of pleural effusions. However, the exact role of VEGF in the development of pleural effusions has yet to be determined. The anti-VEGF mAb, bevacizumab, has been used in the treatment of cancer to reduce local angiogenesis and tumour progression. This study describes the acute effects of VEGF blockade on the expression of inflammatory cytokines and pleural fluid accumulation. Methods: One hundred and twelve New Zealand rabbits received intrapleural injections of either talc or silver nitrate. In each group, half the animals received an intravenous injection of bevacizumab, 30 min before the intrapleural agent was administered. Five animals from each subgroup were sacrificed 1, 2, 3, 4 or 7 days after the procedure. Twelve rabbits were used to evaluate vascular permeability using Evans`s blue dye. Pleural fluid volume and cytokines were quantified. Results: Animals pretreated with anti-VEGF antibody showed significant reductions in pleural fluid volumes after talc or silver nitrate injection. IL-8 levels, vascular permeability and macroscopic pleural adhesion scores were also reduced in the groups that received bevacizumab. Conclusions: This study showed that bevacizumab interferes in the acute phase of pleural inflammation induced by silver nitrate or talc, reinforcing the role of VEGF as a key mediator in the production of pleural effusions. The results also suggest that bevacizumab should probably be avoided in patients requiring pleurodesis.
Resumo:
Aims Cysteine- and glycine-rich protein 3/muscle LIM-domain protein (CRP3/MLP) mediates protein-protein interaction with actin filaments in the heart and is involved in muscle differentiation and vascular remodelling. Here, we assessed the induction of CRP3/MLP expression during arterialization in human and rat veins. Methods and results Vascular CRP3/MLP expression was mainly observed in arterial samples from both human and rat. Using quantitative real time RT-PCR, we demonstrated that the CRP3/MLP expression was 10 times higher in smooth muscle cells (SMCs) from human mammary artery (h-MA) vs. saphenous vein (h-SV). In endothelial cells (ECs), CRP3/MLP was scarcely detected in either h-MA or h-SV. Using an ex vivo flow through system that mimics arterial condition, we observed induction of CRP3/MLP expression in arterialized h-SV. Interestingly, the upregulation of CRP3/MLP was primarily dependent on stretch stimulus in SMCs, rather than shear stress in ECs. Finally, using a rat vein in vivo arterialization model, early (1-14 days) CRP3/MLP immunostaining was observed predominantly in the inner layer and later (28-90 days) it appeared more scattered in the vessel layers. Conclusion Here we provide evidence that CRP3/MLP is primarily expressed in arterial SMCs and that stretch is the main stimulus for CRP3/MLP induction in veins exposed to arterial haemodynamic conditions.
Resumo:
We have examined MC1R variant allele frequencies in the general population of South East Queensland and in a collection of adolescent dizygotic and monozygotic twins and family members to define statistical associations with hair and skin color, freckling, and mole count. Results of these studies are consistent with a linear recessive allelic model with multiplicative penetrance in the inheritance of red hair. Four alleles, D84E, R151C, R160W, and D294H, are strongly associated with red hair and fair skin with multinomial regression analysis showing odds ratios of 63, 118, 50, and 94, respectively. An additional three low-penetrance alleles V60L, V92M, and R163Q have odds ratios 6, 5, and 2 relative to the wild-type allele. To address the cellular effects of MC1R variant alleles in signal transduction, we expressed these receptors in permanently transfected HEK293 cells. Measurement of receptor activity via induction of a cAMP-responsive luciferase reporter gene found that the R151C and R160W receptors were active in the presence of NDP-MSH ligand, but at much reduced levels compared with that seen with the wild-type receptor. The ability to stimulate phosphorylation of the cAMP response element binding protein (CREB) transcription factor was also apparent in all stimulated MC1R variant allele-expressing HEK293 cell extracts as assessed by immunoblotting. In contrast, human melanoma cell lines showed wide variation in the their ability to undergo cAMP-mediated CREB phosphorylation. Culture of human melanocytes of known MC1R genotype may provide the best experimental approach to examine the functional consequences for each MC1R variant allele. With this objective, we have established more than 300 melanocyte cell strains of defined MC1R genotype.
Resumo:
Background: The intrapleural instillation of a sclerosing agent produces an inflammatory process frequently followed by pain. The treatment can include the use of analgesics or anti-inflammatory drugs. Previously, it was demonstrated (experimental studies) that corticoids and nonsteroidal anti-inflammatory drugs (diclofenac) reduce the inflammation and fibrosis produced by talc but not by transforming growth factor-P or silver nitrate. The objective of this study was to determine whether parecoxib (COX-2 inhibitor) affects pleurodesis induced by talc or silver nitrate. Methods: 140 rabbits received intrapleural. injection (2 mL) of 400 mg/kg of talc or 0.5% silver nitrate. A subgroup of 70 animals received additional daily intramuscular parecoxib (1 mg/kg). They were sacrificed at 4, 24, 48, 72 h or 7, 14, or 28 days after the procedure. The pleural fluid was quantified; biochemical examinations (glucose, lactic dehydrogenase, and proteins) and immunologic dosages (interleukin-8, vascular endothelial growth factor, and transforming growth factor-beta(1)) were analyzed in pleural fluid and blood. Finally, macro- and microscopic pleura and lung studies were performed. Results: Evaluation after 28 days demonstrated that parecoxib reduced pleural and pulmonary inflammation but not pleural adhesions. The changes were observed precociously (72 h) and were more evident after silver nitrate injection. Conclusion: Systemic parecoxib injection does not interfere with talc or silver nitrate pleurodesis. These results suggest that use of COX-2 inhibitors can be considered and depending of the results of other studies, recommended in human pleurodesis. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We assessed a new experimental model of isolated right ventricular (RV) failure, achieved by means of intramyocardial injection of ethanol. RV dysfunction was induced in 13 mongrel dogs via multiple injections of 96% ethanol (total dose 1 mL/kg), all over the inlet and trabecular RV free walls. Hemodynamic and metabolic parameters were evaluated at baseline, after ethanol injection, and on the 14th postoperative day (POD). Echocardiographic parameters were evaluated at baseline, on the sixth POD, and on the 13th POD. The animals were then euthanized for histopathological analysis of the hearts. There was a 15.4% mortality rate. We noticed a decrease in pulmonary blood flow right after RV failure (P = 0.0018), as well as during reoperation on the 14th POD (P = 0.002). The induced RV dysfunction caused an increase in venous lactate levels immediately after ethanol injection and on the 14th POD (P < 0.0003). The echocardiogram revealed a decrease in the RV ejection fraction on the sixth and 13th PODs (P = 0.0001). There was an increased RV end-diastolic volume on the sixth (P = 0.0001) and 13th PODs (P = 0.0084). The right ventricle showed a 74% +/- 0.06% transmural infarction area, with necrotic lesions aged 14 days. Intramyocardial ethanol injection has allowed the creation of a reproducible and inexpensive model of RV failure. The hemodynamic, metabolic, and echocardiographic parameters assessed at different protocol times are compatible with severe RV failure. This model may be useful in understanding the pathophysiology of isolated right-sided heart failure, as well as in the assessment of ventricular assist devices.
Resumo:
Severe acute pancreatitis is associated with high morbidity and mortality rates. At the present time, no specific therapy has been shown to be uniformly effective in reducing morbidity and mortality in this disease. The aim of this study was to determine the effects of pentoxifylline on the pancreatic and systemic inflammatory process, pancreatic infection, and mortality rate in severe acute pancreatitis in rats. Methods: One hundred and twenty male Wistar rats were divided into 3 groups: sham, pancreatitis, and pentoxifylline (acute pancreatitis induction plus administration of 25 mg/kg pentoxifylline). Inflammatory response was measured by histological studies, inflammatory cytokine production (IL-6, IL-10, and TNF-alpha), and mortality rate. Pancreatic infection was evaluated by bacterial cultures expressed in colony-forming units per gram. Results: Pentoxifylline-treated animals had a statistically significant reduction of inflammatory cytokine levels, pancreatic histological damage, occurrence of bacterial translocation and pancreatic infection (p < 0.05), associated with a significant reduction in mortality rate. Conclusions: Pentoxifylline administration in this experimental model of acute pancreatitis reduces local and systemic inflammatory responses and decreases the pancreatic infection and the mortality rate. Copyright (C) 2009 S. Karger AG, Basel and IAP
Resumo:
Background and objective The influence of ventilatory settings on static and functional haemodynamic parameters during mechanical ventilation is not completely known. The purpose of this study was to evaluate the effect of positive end-expiratory pressure, tidal volume and inspiratory to expiratory time ratio variations on haemodynamic parameters during haemorrhage and after transfusion of shed blood. Methods Ten anaesthetized pigs were instrumented and mechanically ventilated with a tidal volume of 8 ml kg(-1), a positive end-expiratory pressure of 5 cmH(2)O and an inspiratory to expiratory ratio of 1 : 2. Then, they were submitted in a random order to different ventilatory settings (tidal volume 16 ml kg(-1), positive end-expiratory pressure 15 cmH(2)O or inspiratory to expiratory time ratio 2: 1). Functional and static haemodynamic parameters (central venous pressure, pulmonary artery occlusion pressure, right ventricular end-diastolic volume and pulse pressure variation) were evaluated at baseline, during hypovolaemia (withdrawal of 20% of estimated blood volume) and after an infusion of withdrawn blood (posttransfusion). Results During baseline, a positive end-expiratory pressure of 15cmH(2)O significantly increased pulmonary artery occlusion pressure from 14.6 +/- 1.6 mmHg to 17.4 +/- 1.7 mmHg (P<0.001) and pulse pressure variation from 15.8 +/- 8.5% to 25.3 +/- 9.5% (P<0.001). High tidal volume increased pulse pressure variation from 15.8 8.5% to 31.6 +/- 10.4% (P<0.001), and an inspiratory to expiratory time ratio of 2: 1 significantly increased only central venous pressure. During hypovolaemia, high positive end-expiratory pressure influenced all studied variables, and high tidal volume strongly increased pulse pressure variation (40.5 +/- 12.4% pre vs. 84.2 +/- 19.1 % post, P<0.001). The inversion of the inspiratory to expiratory time ratio only slightly increased filling pressures during hypovolaemia, without without affecting pulse pressure variation or right ventricle end-diastolic volume. Conclusion We concluded that pulse pressure variation measurement is influenced by cyclic variations in intrathoracic pressure, such as those caused by augmentations in tidal volume. The increase in mean airway pressure caused by positive end-expiratory pressure affects cardiac filling pressures and also pulse pressure variation, although to a lesser extent. Inversion of the inspiratory to expiratory time ratio does not induce significant changes in static and functional haemodynamic parameters. Eur J Anaesthesiol 26:66-72 (c) 2009 European Society of Anaesthesiology.
Resumo:
We investigated the effects of oral tolerance (OT) in controlling inflammatory response, hyperresponsiveness and airway remodeling in guinea pigs (GP) with chronic allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/mL-OVA group) or normal saline (NS group). OT was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st ovalbumin inhalation (OT1 group) or after the 4th (OT2 group). The induction of OT in sensitized animals decreased the elastance of respiratory system (Ers) response after both antigen and methacholine challenges, peribronchial edema formation, eosinophilic airway infiltration, eosinophilopoiesis, and airways collagen and elastic fiber content compared to OVA group (P < 0.05). The number of mononuclear cells and resistance of respiratory system (Rrs) responses after antigen and methacholine challenges were decreased only in OT2 group compared to OVA group (P < 0.05). Concluding, our results show that inducing OT attenuates airway remodeling as well as eosinophilic inflammation and respiratory system mechanics. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to investigate whether the toxicity of saturated and polyunsaturated fatty acids (PUFA) on RINm5F cells is related to the phosphorylation state of Akt, ERK and PKC delta. The regulation of these kinases was compared in three experimental designs: (a) 4 h-exposure, (b) 4 h-exposure and a subsequent withdrawn of the FA for a 20 h period and (c) 24 h-exposure. Saturated and PUFA were toxic to RINm5F cells even at low concentrations. Also, evidence is provided for a late (i.e. the effect only appeared hours after the treatment) and a persistent regulation (i.e. maintenance of the effect for several hours) of Akt, ERK and PKC delta phosphorylation by the FA. Late activation of PKC delta seems important for palmitate cytotoxicity. Persistent activation of the survival proteins Akt and ERK by stearate, oleate and arachidonate might play an important role to prevent the toxic effect of posterior PKC delta activation. The results shown may explain why a short-period exposure to FA is not enough to induce cytotoxicity in pancreatic beta-cells, since survival pathways are activated. Besides, when this activation is persistent, it may overcome a posterior induction of death pathways. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated the effect of pcDNA3-CpG and pcDNA-IL-12, delivered by intradermal gene gun administration, on the blood/lung eosinophilia, airway hyperresponsiveness as well as the immune response in a murine model of toxocariasis. Our results demonstrated that pcDNA-IL-12 but not pcDNA3-CpG vaccination Led to a persistent tower blood/bronchoalveolar eosinophilia following Toxocaro conis infection, as pcDNA3-CpG led only to an early transient blockage of eosinophil transmigration into bronchoalveolar fluid following T canis infection. Prominent Type-1 immune response was pointed out as the halt-mark of T canis infection following pcDNA-IL-12 vaccination. Outstanding IFN-gamma/IL-4 ratio besides tow levels of IgG1 with subsequent high IgG2a/IgG1 ratio further characterized a Type-1 polarized immunological profile in pcDNA-IL-12-vaccinated animals. Nevertheless, only pcDNA3-CpG was able to prevent airway hyperresponsiveness induced by T canis infection. The persistent airway hyperresponsiveness observed in pcDNA-IL-12-vaccinated animals demonstrated that the airway constriction involved other immunological mediator than those blocked by pcDNA-IL-12. Together, these data indicated that pcDNA-IL-12 and pcDNA3-CpG vaccines have distinct therapeutic benefits regarding the eosinophilic inflammation/airway hyperresponsiveness triggered by T canis infection, suggesting their possible use in further combined therapeutic interventions. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Ambient particles have been consistently associated with adverse health effects, yielding mainly high cardiorespiratory morbidity and mortality. Diesel engines represent a major source of particles in the urban scenario. We aimed to modify the composition of diesel particles, by means of different extraction procedures, to relate changes in chemical profile to corresponding indicators of respiratory toxicity. Male BALB/c mice were nasally instilled with saline, or with diesel particles, treated or not, and assigned to five groups: saline ( SHAM), intact diesel particles (DEP), and diesel particles previously treated with methanol ( METH), hexane ( HEX), or nitric acid (NA). Elemental composition and organic compounds were analyzed. Twenty-four hours after nasal instillation, respiratory parameters were measured and lung tissue was collected for histological analysis. Static elastance was significantly increased in groups DEP and MET in relation to the other groups. HEX and NA were different from DEP but not significantly different from SHAM and METH groups. The difference between dynamic and static elastance was increased in DEP, METH, and NA treatments; HEX was not statistically different from SHAM. DEP and METH groups presented significantly increased upper airways resistance, while DEP, METH, and NA showed higher peripheral airways resistance values. All groups had a higher total resistance than SHAM. DEP, METH, and NA showed significant increased infiltration of polymorphonuclear cells. In conclusion, diesel particles treated with hexane ( HEX) resulted in a respiratory-system profile very similar to that in SHAM group, indicating that hexane treatment attenuates pulmonary inflammation elicited by diesel particles.
Resumo:
Many features of chronic kidney disease may be reversed, but it is unclear whether advanced lesions, such as adhesions of sclerotic glomerular tufts to Bowman`s capsule (synechiae), can resolve during treatment. We previously showed, using a renal ablation model, that the renoprotective effect of the AT-1 receptor blocker, losartan, is dose-dependent. Here we determined if moderate and advanced glomerular lesions, associated with streptozotocin-induced diabetes, regress with conventional or high-dose losartan treatment. Using daily insulin injection for 10 months, we maintained diabetic adult male Munich-Wistar rats in a state of moderate hyperglycemia. Following this period, some rats continued to receive insulin with or without conventional or high-dose losartan for an additional 2 months. Diabetic rats pretreated with insulin for 10 months and age-matched non-diabetic rats served as controls. Mesangial expansion was found in the control diabetic rats and was exacerbated in those rats maintained on only insulin for an additional 2 months. Conventional and high-dose losartan treatments reduced this mesangial expansion and the severity of synechiae lesions below that found prior to treatment; however, the frequency of the latter was unchanged. There was no dose-response effect of losartan. Our results show that regression of mesangial expansion and contraction of sclerotic lesions is feasible in the treatment of diabetes, but complete resolution of advanced glomerulosclerosis may be hard to achieve.
Resumo:
Introduction. Lung transplantation has become the mainstay therapy for patients with end-stage lung disease refractory to medical management. However, the number of patients listed for lung transplantation largely exceeds available donors. The study of lung preservation requires accurate, cost-effective small animal models. We have described a model of ex vivo rat lung perfusion using a commercially available system. Methods. Male Wistar rats weighing 250 g-300 g were anesthetized with intraperitoneal sodium thiopental (50 mg/kg body weight). The surgical technique included heart-lung block extraction, assembly, and preparation for perfusion and data collection. We used an IL-2 Isolated Perfused Rat or Guinea Pig Lung System (Harvard Apparatus, Holliston, Mass, United States; Hugo Sachs Elektronik, Alemanha). Results. Preliminary results included hemodynamic and pulmonary mechanics data gathered in the experiments. Conclusion. The isolated rat lung perfusion system is a reliable method to assess lung preservation.
Resumo:
The PrP(C) is expressed in several cell types but its physiological function is unknown. Some studies associate the PrP(C) with copper metabolism and the antioxidant activity of SOD. Our hypothesis was that changes in PrP(C) expression lead to abnormal copper regulation and induce SOD downregulation in the vascular wall. Objectives: to study whether the PrP(C) expression undergoes induction by agents that trigger endoplasmic reticulum stress (ERS) and, in this context, to evaluate the SOD activity. Methods: To trigger ERS, in vitro, rabbit aortic smooth muscle cells were challenged for 4, 8 and 18 hours, with angiotensin-II, tunicamycin and 7-ketocholesterol. For in vivo studies rabbit aortic arteries were subjected to injury by balloon catheter. Results: In vitro baseline SOD activity, determined through inhibition of cytochrome-c reduction, was 13.9 +/- 1.2 U/mg protein, angiotensin-II exposed for 8 hours produced an increase in SOD activity, and cellular copper concentration was about 9 times greater only under these conditions. Western blotting analysis for SOD isoenzymes showed an expression profile that was not correlated with the enzymatic activity. PrP(C) expression decreased after exposure to all agents after different incubation periods. RT-PCR assay showed increased mRNA expression for PrP(C) only in cells stimulated for 8 hours with the different stressors. The PrP(C) mRNA expression in rabbit aortic artery fragments, subjected to balloon catheter injury, showed a pronounced increase immediately after overdistension. The results obtained indicated a PrP(C) protection factor during the early part of the ERS exposure period, but did not demonstrate a SOD-like profile for the PrP(C). (C) 2009 Elsevier GmbH. All rights reserved.