826 resultados para endurance
Resumo:
Biological systems have acquired effective adaptive strategies to cope with physiological challenges and to maximize biochemical processes under imposed constraints. Striated muscle tissue demonstrates a remarkable malleability and can adjust its metabolic and contractile makeup in response to alterations in functional demands. Activity-dependent muscle plasticity therefore represents a unique model to investigate the regulatory machinery underlying phenotypic adaptations in a fully differentiated tissue. Adjustments in form and function of mammalian muscle have so far been characterized at a descriptive level, and several major themes have evolved. These imply that mechanical, metabolic and neuronal perturbations in recruited muscle groups relay to the specific processes being activated by the complex physiological stimulus of exercise. The important relationship between the phenotypic stimuli and consequent muscular modifications is reflected by coordinated differences at the transcript level that match structural and functional adjustments in the new training steady state. Permanent alterations of gene expression thus represent a major strategy for the integration of phenotypic stimuli into remodeling of muscle makeup. A unifying theory on the molecular mechanism that connects the single exercise stimulus to the multi-faceted adjustments made after the repeated impact of the muscular stress remains elusive. Recently, master switches have been recognized that sense and transduce the individual physical and chemical perturbations induced by physiological challenges via signaling cascades to downstream gene expression events. Molecular observations on signaling systems also extend the long-known evidence for desensitization of the muscle response to endurance exercise after the repeated impact of the stimulus that occurs with training. Integrative approaches involving the manipulation of single factors and the systematic monitoring of downstream effects at multiple levels would appear to be the ultimate method for pinpointing the mechanism of muscle remodeling. The identification of the basic relationships underlying the malleability of muscle tissue is likely to be of relevance for our understanding of compensatory processes in other tissues, species and organisms.
Resumo:
Intramyocellular lipids (IMCL) and muscle glycogen provide local energy during exercise (EX). The objective of this study was to clarify the role of high versus low IMCL levels at equal initial muscle glycogen on fuel selection during EX. After 3 h of depleting exercise, 11 endurance-trained males consumed in a crossover design a high-carbohydrate (7 g kg(-1) day(-1)) low-fat (0.5 g kg(-1) day(-1)) diet (HC) for 2.5 days or the same diet with 3 g kg(-1) day(-1) more fat provided during the last 1.5 days of diet (four meals; HCF). Respiratory exchange, thigh muscle substrate breakdown by magnetic resonance spectroscopy, and plasma FFA oxidation ([1-(13)C]palmitate) were measured during EX (3 h, 50% W (max)). Pre-EX IMCL concentrations were 55% higher after HCF. IMCL utilization during EX in HCF was threefold greater compared with HC (P < 0.001) and was correlated with aerobic power and highly correlated (P < 0.001) with initial content. Glycogen values and decrements during EX were similar. Whole-body fat oxidation (Fat(ox)) was similar overall and plasma FFA oxidation smaller (P < 0.05) during the first EX hour after HCF. Myocellular fuels contributed 8% more to whole-body energy demands after HCF (P < 0.05) due to IMCL breakdown (27% Fat(ox)). After EX, when both IMCL and glycogen concentrations were again similar across trials, a simulated 20-km time-trial showed no difference in performance between diets. In conclusion, IMCL concentrations can be increased during a glycogen loading diet by consuming additional fat for the last 1.5 days. During subsequent exercise, IMCL decrease in proportion to their initial content, partly in exchange for peripheral fatty acids.
Resumo:
The number of elderly people is growing in western populations, but only few maximal performance data exist for people >75 years, in particular for European octogenarians. This study was performed to characterize maximal performance of 55 independently living subjects (32 women, 81.1 +/- 3.4 years; 23 men, 81.7 +/- 2.9 years) with a focus on sex differences. Maximal performance was determined in a ramp test to exhaustion on a bicycle ergometer with ergospirometry, electrocardiogram and blood lactate measurements. Maximal isometric extension strength of the legs (MEL) was measured on a force platform in a seated position. Body composition was quantified by X-ray absorptiometry. In >25% of the subjects, serious cardiac abnormalities were detected during the ramp test with men more frequently being affected than women. Maximal oxygen consumption and power output were 18.2 +/- 3.2 versus 25.9 +/- 5.9 ml min(-1) kg(-1) and 66 +/- 12 versus 138 +/- 40 W for women versus men, with a significant sex difference for both parameters. Men outperformed women for MEL with 19.0 +/- 3.8 versus 13.6 +/- 3.3 N kg(-1). Concomitantly, we found a higher proportion of whole body fat in women (32.1 +/- 6.2%) compared to men (20.5 +/- 4.4%). Our study extends previously available maximal performance data for endurance and strength to independently living European octogenarians. As all sex-related differences were still apparent after normalization to lean body mass, it is concluded that it is essential to differentiate between female and male subjects when considering maximal performance parameters in the oldest segment of our population.
Resumo:
The muscle has a wide range of possibilities to adapt its phenotype. Repetitive submaximal concentric exercise (i.e., shortening contractions) mainly leads to adaptations of muscle oxidative metabolism and endurance while eccentric exercise (i.e., lengthening contractions) results in muscle growth and gain of muscle strength. Modified gene expression is believed to mediate these exercise-specific muscle adjustments. In the present study, early alterations of the gene expression signature were monitored by a muscle-specific microarray. Transcript profiling was performed on muscle biopsies of vastus lateralis obtained from six male subjects before and in a 24-h time course after a single bout of mild eccentric ergometer exercise. The eccentric exercise consisted of 15 min of eccentric cycling at 50% of the individual maximal concentric power output leading to muscle soreness (5.9 on a 0-10 visual analogue scale) and limited muscle damage (1.7-fold elevated creatine kinase activity). Muscle impairment was highlighted by a transient reduction in jumping height after the eccentric exercise. On the gene expression level, we observed a general early downregulation of detected transcripts, followed by a slow recovery close to the control values within the first 24 h post exercise. Only very few regulatory factors were increased. This expression signature is different from the signature of a previously published metabolic response after an intensive endurance-type concentric exercise as well as after maximal eccentric exercise. This is the first description of the time course of changes in gene expression as a consequence of a mild eccentric stimulus.
Resumo:
A number of molecular tools enable us to study the mechanisms of muscle plasticity. Ideally, this research is conducted in view of the structural and functional consequences of the exercise-induced changes in gene expression. Muscle cells are able to detect mechanical, metabolic, neuronal and hormonal signals which are transduced over multiple pathways to the muscle genome. Exercise activates many signaling cascades--the individual characteristic of the stress leading to a specific response of a network of signaling pathways. Signaling typically results in the transcription of multiple early genes among those of the well known for and jun family, as well as many other transcription factors. These bind to the promoter regions of downstream genes initiating the structural response of muscle tissue. While signaling is a matter of minutes, early genes are activated over hours leading to a second wave of transcript adjustments of structure genes that can then be effective over days. Repeated exercise sessions thus lead to a concerted accretion of mRNAs which upon translation results in a corresponding protein accretion. On the structural level, the protein accretion manifests itself for instance as an increase in mitochondrial volume upon endurance training or an increase in myofibrillar proteins upon strength training. A single exercise stimulus carries a molecular signature which is typical both for the type of stimulus (i.e. endurance vs. strength) as well as the actual condition of muscle tissue (i.e. untrained vs. trained). Likewise, it is clearly possible to distinguish a molecular signature of an expressional adaptation when hypoxic stress is added to a regular endurance exercise protocol in well-trained endurance athletes. It therefore seems feasible to use molecular tools to judge the properties of an exercise stimulus much earlier and at a finer level than is possible with conventional functional or structural techniques.
Resumo:
The hypotheses that postexercise replenishment of intramyocellular lipids (IMCL) is enhanced by endurance training and that it depends on fat intake were tested. Trained and untrained subjects exercised on a treadmill for 2 h at 50% peak oxygen consumption, reducing IMCL by 26-22%. During recovery, they were fed 55% (high fat) or 15% (low fat) lipid energy diets. Muscle substrate stores were estimated by (1)H (IMCL)- and (13)C (glycogen)-magnetic resonance spectroscopy in tibialis anterior muscle before and after exercise. Resting IMCL content was 71% higher in trained than untrained subjects and correlated significantly with glycogen content. Both correlated positively with indexes of insulin sensitivity. After 30 h on the high-fat diet, IMCL concentration was 30-45% higher than preexercise, whereas it remained 5-17% lower on the low-fat diet. Training status had no significant influence on IMCL replenishment. Glycogen was restored within a day with both diets. We conclude that fat intake postexercise strongly promotes IMCL repletion independently of training status. Furthermore, replenishment of IMCL can be completed within a day when fat intake is sufficient.
Resumo:
PURPOSE: Gender-specific differences in substrate utilization during exercise have been reported, typically such that women rely more on fat than men. This study investigated whether gender differences exist in the utilization of intramyocellular lipids (IMCL) and glycogen. METHODS: IMCL and glycogen, as well as total fat and carbohydrate (CHO) oxidation were measured in nine males and nine females before, during, and after an endurance exercise. The trained subjects exercised on a bicycle ergometer at 50% maximal workload for 3 h. IMCL and glycogen were determined in the thigh by magnetic resonance spectroscopy. Oxygen uptake (VO(2)) and carbon dioxide production were determined by open circuit spirometry to calculate total fat and CHO oxidation. Relative power output, percent of maximum heart rate, VO(2peak), and respiratory exchange ratio were the same. RESULTS: Average fat oxidation was the same, whereas CHO oxidation was significantly higher in males compared with females. The relative contribution of these fuels to total energy used were similar in males and females. Males and females depleted IMCL and glycogen significantly (P < 0.001) during the 3-h exercise. IMCL levels at rest (P < 0.05) and its depletion during exercise (P < 0.001) were significantly higher in males compared with females, whereas glycogen was stored and used in the same range by both genders. CONCLUSION: During this 3-h exercise, energy supplies from fat and CHO were similar in both genders, and males as well as females reduced their IMCL stores significantly. The larger contribution of IMCL during exercise in males compared with females could either be a result of gender-specific substrate selection, or different long-term training habit.
Resumo:
It is well established that local muscle tissue hypoxia is an important consequence and possibly a relevant adaptive signal of endurance exercise training in humans. It has been reasoned that it might be advantageous to increase this exercise stimulus by working in hypoxia. However, as long-term exposure to severe hypoxia has been shown to be detrimental to muscle tissue, experimental protocols were developed that expose subjects to hypoxia only for the duration of the exercise session and allow recovery in normoxia (live low-train high or hypoxic training). This overview reports data from 27 controlled studies using some implementation of hypoxic training paradigms. Hypoxia exposure varied between 2300 and 5700 m and training duration ranged from 10 days to 8 weeks. A similar number of studies was carried out on untrained and on trained subjects. Muscle structural, biochemical and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available data on global estimates of performance capacity such as maximal oxygen uptake (VO2max) and maximal power output (Pmax), hypoxia as a supplement to training is not consistently found to be of advantage for performance at sea level. There is some evidence mainly from studies on untrained subjects for an advantage of hypoxic training for performance at altitude. Live low-train high may be considered when altitude acclimatization is not an option.
Resumo:
BACKGROUND: Myocardial contrast echocardiography (MCE) is able to measure in vivo relative blood volume (rBV, i.e., capillary density), and its exchange frequency b, the constituents of myo-cardial blood flow (MBF, ml min-1 g-1). This study aimed to assess, by MCE, whether left ventricular hypertrophy (LVH) in hypertrophic cardiomyopathy (HCM) can be differentiated from LVH in triathletes (athlete's heart, AH) or from hypertensive heart disease patients (HHD). METHODS: Sixty individuals, matched for age (33 +/- 10 years) and gender, and subdivided into four groups (n = 15) were examined: HCM, AH, HHD and a group of sedentary individuals without LVH (S). rBV (ml ml-1), b (min-1) and MBF, at rest and during adenosine-induced hyperaemia, were derived by MCE in mid septal, lateral and inferior regions. The ratio of MBF during hyperaemia and MBF at rest yielded myocardial blood flow reserve (MBFR). RESULTS: Septal wall rBV at rest was lower in HCM (0.084 +/- 0.023 ml ml-1) than in AH (0.151 +/- 0.024 ml ml-1, p <0.01) and in S (0.129 +/- 0.026 ml ml-1, p <0.01), but was similar to HHD (0.097 +/- 0.016 ml ml-1). Conversely, MBFR was lowest in HCM (1.67 +/- 0.93), followed by HHD (2.8 +/- 0.93, p <0.01), by S (3.36 +/- 1.03, p <0.001) and by AH (4.74 +/- 1.46, p <0.0001). At rest, rBV <0.11 ml ml-1 accurately distinguished between HCM and AH (sensitivity 99%, specificity 99%), similarly MBFR < or =1.8 helped to distinguish between HCM and HHD (sensitivity 100%, specificity 77%). CONCLUSIONS: rBV at rest, most accurately distinguishes between pathological LVH due to HCM and physiological, endurance-exercise induced LVH.
Resumo:
PURPOSE: Alpine ski performance relates closely to both anaerobic and aerobic capacities. During their competitive season, skiers greatly reduce endurance and weight training, and on-snow training becomes predominant. To typify this shift, we compared exhaustive ramp cycling and squat (SJ) and countermovement jumping (CMJ) performance in elite males before and after their competitive season. RESULTS: In postseason compared with preseason: 1) maximal oxygen uptake (VO 2 max) normalized to bodyweight was higher (55.2 +/- 5.2 vs 52.7 +/- 3.6 mL x kg(-1) x min(-1), P < 0.01), but corresponding work rate (W) was unchanged; 2) at ventilatory thresholds (VT), absolute and relative work rates were similar but heart rates were lower; 3) VO2/W slope was greater (9.59 +/- 0.6 vs 9.19 +/- 0.4 mL O2 x min(-1) x W(-1), P = 0.02), with similar flattening (P < 0.01) above V T1 at both time points; and 4) jump height was greater in SJ (47.4 +/- 4.4 vs 44.7 +/- 4.3 cm, P < 0.01) and CMJ (52.7 +/- 4.6 vs 50.4 +/- 5.0 cm, P < 0.01). DISCUSSION: We believe that aerobic capacity and leg power were constrained in preseason and that improvements primarily reflected an in-season recovery from a fatigued state, which was caused by incongruous preseason training. Residual adaptations to high-altitude exposure in preseason could have also affected the results. Nonetheless, modern alpine skiing seemingly provides an ample cardiovascular training stimulus for skiers to maintain their aerobic capacities during the racing season. CONCLUSIONS: We conclude that aerobic fitness and leg explosiveness can be maintained in-season but may be compromised by heavy or excessive preseason training. In addition, ramp test V O2/W slope analysis could be useful for monitoring both positive and negative responses to training.
Resumo:
Aussagen zur Lebensdauer von Zahnriemen sind ein wesentlicher Bestandteil zur Auslegung und Überwachung von Zahnriementrieben. An der Professur für Technische Logistik werden endliche Zahnriemen mit Stahlcord beim Einsatz als Tragmittel untersucht, um grundsätzliche Aussagen zur Lebensdauer zu erhalten.
Resumo:
Immersive virtual environments (IVEs) have the potential to afford natural interaction in the three-dimensional (3D) space around a user. However, interaction performance in 3D mid-air is often reduced and depends on a variety of ergonomics factors, the user's endurance, muscular strength, as well as fitness. In particular, in contrast to traditional desktop-based setups, users often cannot rest their arms in a comfortable pose during the interaction. In this article we analyze the impact of comfort on 3D selection tasks in an immersive desktop setup. First, in a pre-study we identified how comfortable or uncomfortable specific interaction positions and poses are for users who are standing upright. Then, we investigated differences in 3D selection task performance when users interact with their hands in a comfortable or uncomfortable body pose, while sitting on a chair in front of a table while the VE was displayed on a headmounted display (HMD). We conducted a Fitts' Law experiment to evaluate selection performance in different poses. The results suggest that users achieve a significantly higher performance in a comfortable pose when they rest their elbow on the table.
Resumo:
BACKGROUND The extent to which physical performance limitations affect the ability of childhood cancer survivors to reach healthy activity levels is unknown. Therefore this study aims to describe the effect of different types of limitations on activity levels in survivors. PROCEDURE Within the Swiss Childhood Cancer Survivor Study we sent a questionnaire to all survivors (≥16 years) registered in the Swiss Childhood Cancer Registry, who survived >5 years and were diagnosed 1976-2005 aged <16 years. We measured healthy activity levels using international guidelines and assessed different kinds of performance limitations (visual impairment, weight and endurance problems, cardiorespiratory, musculoskeletal, and neurological problems, pain and fatigue syndromes). RESULTS The sample included 1,560 survivors (75% response rate), of whom 209 (13.5%) reported they have performance limitations. Forty-two percent of survivors with limitations reached healthy activity levels, compared to 57% of survivors without limitations. Least active were survivors with vision impairments (25% active), weight and endurance problems (27.3%), cardiorespiratory problems (36.4%), and musculoskeletal problems (43.1%). After adjusting for socio-demographic variables and type of cancer, we found that survivors with limitations were 1.4 (95%CI 1.0-2.0; P = 0.047) times more likely to be inactive. CONCLUSIONS Although many survivors with physical performance limitations maintain healthy activity levels, there is room for improvement. Adapted and targeted physical activity counseling for survivors with performance limitations might help them to raise level of activity and pursue a healthy lifestyle.
Resumo:
Most physical education intervention studies on the positive effect of sports on self-concept development have attempted to increase schoolchildren’s self-concept without taking the veridicality of the self-concept into account. The present study investigated whether a 10-week intervention in physical education would lead to an increase not only in the general level of self-concept of endurance and self-concept of strength but also in its veridicality in those who had previously under- or overestimated their abilities. A total of 464 primary schoolchildren (246 boys, 218 girls, Mage = 11.9) either participated in the intervention or served as controls. The intervention group received endurance and strength training during physical education lessons carried out with a consistent individualized teacher frame of reference (iTFR). Results showed that this specific intervention was associated with increases not only in the general level of self-concept but also in its veridicality in under- and overestimators. Results are discussed in terms of didactic methods to promote functional self-concepts in physical education.
Resumo:
PURPOSE The ironman (IM) triathlon is a popular ultraendurance competition, consisting of 3.8 km of swimming, 180.2 km of cycling, and 42.2 km of running. The aim of this study was to investigate the predictors of IM race time, comparing echocardiographic findings, anthropometric measures, and training characteristics. METHODS Amateur IM athletes (ATHL) participating in the Zurich IM race in 2010 were included. Participants were examined the day before the race by a comprehensive echocardiographic examination. Moreover, anthropometric measurements were obtained the same day. During the 3 months before the race, each IM-ATHL maintained a detailed training diary. Recorded data were related to total IM race time. RESULTS Thirty-eight IM finishers (mean ± SD age = 38 ± 9 yr, 32 men [84%]) were evaluated. Total race time was 684 ± 89 min (mean ± SD). For right ventricular fractional area change (45% ± 7%, Spearman ρ = -0.33, P = 0.05), a weak correlation with race time was observed. Race performance exhibited stronger associations with percent body fat (15.2 ± 5.6%, ρ = 0.56, P = 0.001), speed in running training (11.7 ± 1.2 km · h(-1), ρ = -0.52, P = 0.002), and left ventricular myocardial mass index (98 ± 24 g · m(-2), ρ = -0.42, P = 0.009). The strongest association was found between race time and right ventricular end-diastolic area (22 ± 4 cm2, ρ = -0.64, P < 0.0001). In multivariate analysis, right ventricular end-diastolic area (β = -16.7, 95% confidence interval = -27.3 to -6.1, P = 0.003) and percent body fat (β = 6.8, 95% confidence interval = 1.1-12.6, P = 0.02) were independently predictive of IM race time. CONCLUSIONS In amateur IM-ATHL, RV end-diastolic area and percent body fat were independently related to race performance. RV end-diastolic area was the strongest predictor of race time. The role of the RV in endurance exercise may thus be more important than previously thought and needs to be further studied.