727 resultados para ecologically sustainability
Resumo:
Cities have become a focal point for efforts to transition towards a more sustainable, low-carbon society, with many municipal agencies championing ‘eco city’ initiatives of one kind or another. And yet, national policy initiatives frequently play an important – if sometimes overlooked – role, too. This chapters provides comparative perspectives on four recent national sustainable city programmes from France, India, Japan, and the United Kingdom. The analysis reveals two key insights: first, national policy is found to exercise a strong shaping role in what sustainable development for future cities is understood to be, which helps explain the considerable differences in priorities and approaches across countries. Second, beyond articulating strategic priorities, national policy may exercise a ‘soft’ governance function by incentivising and facilitating wider, voluntary governance networks in the effort to implement sustainable city projects locally. This innovative role, however, depends on the ability of national policy to produce resonance among societal actors and on its effective interaction with formal planning processes.
Resumo:
In the repressive political climate prevailing in Egypt in 2013-15, news ventures aspiring to high standards of reporting were forced to innovate. This paper analyses three Egyptian start-ups that experimented with novel revenue streams and news services during that period, to gain insights into their approaches to managing journalism. In the process it compares different criteria for assessing sustainability and concludes that, in adverse political environments, narrow economic measures of profitability and survival may give a misleading picture as to the sustainability of the kind of journalism conducive to democratic practice. Operating collaboratively, transparently and ethically may slow productivity and profitability in the short term while laying stronger foundations for durable relations among media teams, as well as with readers and advertisers, in the long run.
Resumo:
The paper extends research into the importance of freight transport partnerships by considering the role of Business Improvement Districts (BIDs) in supporting sustainable urban freight initiatives. A review of the freight transport-related work that has been carried out in BIDs in central London is included. A detailed case study of a freight project in the Baker Street Quarter (BSQ) Partnership provides insight into work carried out in the multi-tenanted office and hotel sectors. The findings of this research in terms of freight transport and logistics activity patterns at the businesses studied together with the potential freight transport solutions identified are discussed.
Resumo:
The Malaysian palm oil industry is well known for the social, environmental and sustainability challenges associated with its rapid growth over the past ten years. Technologies exist to reduce the conflict between national development aims of economic uplift for the rural poor, on the one hand, and ecological conservation, on the other hand, by raising yields and incomes from areas already under cultivation. But the uptake of these technologies has been slow, particularly in the smallholder sector. In this paper we explore the societal and institutional challenges that influence the investment and innovation decisions of micro and small enterprise (MSE) palm oil smallholders in Sabah, Malaysia. Based on interviews with 38 smallholders, we identify a number of factors that reduce the smallholders' propensity to invest in more sustainable practices. We discuss why more effective practices and innovations are not being adopted using the concepts of, firstly, institutional logics to explore the internal dynamics of smallholder production systems, including attitudes to sustainability and innovation; and, secondly, institutional context to explore the pressures the smallholders face, including problems of access to land, labour, capital, knowledge and technical resources. These factors include limited access to global market information, corruption and uncertainties of legal title, weak economic status and social exclusion. In discussing these factors we seek to contribute to wider theoretical debates about the factors that block innovation and investment in business improvements in marginal regions and in marginalised groups.
Resumo:
The impact of effluent wastewaters from four different hospitals: a university (1456 beds), a general (350 beds), a pediatric (110 beds) and a maternity hospital (96 beds), which are conveyed to the same wastewater treatment plant (WWTP), was evaluated in the receiving urban wastewaters. The occurrence of 78 pharmaceuticals belonging to several therapeutic classes was assessed in hospital effluents and WWTP wastewaters (influent and effluent) as well as the contribution of each hospital in WWTP influent in terms of pharmaceutical load. Results indicate that pharmaceuticals are widespread pollutants in both hospital and urban wastewaters. The contribution of hospitals to the input of pharmaceuticals in urban wastewaters widely varies, according to their dimension. The estimated total mass loadings were 306 g d− 1 for the university hospital, 155 g d− 1 for the general one, 14 g d− 1 for the pediatric hospital and 1.5 g d− 1 for the maternity hospital, showing that the biggest hospitals have a greater contribution to the total mass load of pharmaceuticals. Furthermore, analysis of individual contributions of each therapeutic group showed that NSAIDs, analgesics and antibiotics are among the groups with the highest inputs. Removal efficiency can go from over 90% for pharmaceuticals like acetaminophen and ibuprofen to not removal for β-blockers and salbutamol. Total mass load of pharmaceuticals into receiving surface waters was estimated between 5 and 14 g/d/1000 inhabitants. Finally, the environmental risk posed by pharmaceuticals detected in hospital and WWTP effluents was assessed by means of hazard quotients toward different trophic levels (algae, daphnids and fish). Several pharmaceuticals present in the different matrices were identified as potentially hazardous to aquatic organisms, showing that especial attention should be paid to antibiotics such as ciprofloxacin, ofloxacin, sulfamethoxazole, azithromycin and clarithromycin, since their hazard quotients in WWTP effluent revealed that they could pose an ecotoxicological risk to algae.
Resumo:
Engineering education practices have evolved not only due to the natural changes in the contents of the curricula and skills but also, and more recently, due to the requirements imposed by the Bologna revision process. In addition, industry is becoming more demanding, as society is becoming more and more aware of the global needs and consequences of industrial practices. Under this scope, higher education needs not only to follow but also to lead these trends. Therefore, the School of Engineering of the Polytechnic Institute of Porto (ISEP), a Global Reporting Initiative (GRI) training partner in Portugal, prepared and presented its Sustainability Action Plan (PASUS), with the main objective of creating a new kind of engineers, with Sustainable Development at the core of their graduation and MsC degrees. In this paper, the main strategies and activities of the referred plan along with the strategic approach, which guided its development and implementation, will be presented in detail. Additionally, a reflection about the above mentioned bridge between concept and application will be established and justified, in the framework of the action plan. Although in most of the situations, there was no prior discussion or specific request, many of the graduation and post-graduation programmes offered by ISEP already include courses that attend to PASUS philosophy. As a consequence, the number of Master thesis, Graduation projects and R&D projects that address sustainability problems has grown substantially, a proof that for ISEP community, sustainability really matters!
Resumo:
In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.
Resumo:
The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.
Resumo:
The industrial activity is inevitably associated with a certain degradation of the environmental quality, because is not possible to guarantee that a manufacturing process can be totally innocuous. The eco-efficiency concept is globally accepted as a philosophy of entreprise management, that encourages the companies to become more competitive, innovative and environmentally responsible by promoting the link between its companies objectives for excellence and its objectives of environmental excellence issues. This link imposes the creation of an organizational methodology where the performance of the company is concordant with the sustainable development. The main propose of this project is to apply the concept of eco-efficiency to the particular case of the metallurgical and metal workshop industries through the development of the particular indicators needed and to produce a manual of procedures for implementation of the accurate solution.
Resumo:
This article evaluates the sustainability and economic potential of microalgae grown in brewery wastewater for biodiesel and biomass production. Three sustainability and two economic indicators were considered in the evaluation within a life cycle perspective. For the production system the most efficient process units were selected. Results show that harvesting and oil separation are the main process bottlenecks. Microalgae with higher lipid content and productivity are desirable for biodiesel production, although comparable to other biofuel’s feedstock concerning sustainability. However, improvements are still needed to reach the performance level of fossil diesel. Profitability reaches a limit for larger cultivation areas, being higher when extracted biomass is sold together with microalgae oil, in which case the influence of lipid content and areal productivity is smaller. The values of oil and/or biomass prices calculated to ensure that the process is economically sound are still very high compared with other fuel options, especially biodiesel.
Resumo:
This study performs a sustainability evaluation of biodiesel from microalga Chlamydomonas sp. grown in 20 % (v/v) of brewery’s wastewater, blended with pentose sugars (xylose, arabinose or ribose resulting from the hydrolysis of brewer’s spent grains (BSG). The life cycle steps considered for the study are: microalgae cultivation, biomass processing and lipids extraction at the brewery site, and its conversion to biodiesel at a dedicated external biofuel’s plant. Three sustainability indicators (LCEE, FER and GW) were considered and calculated using experimental data. Literature data was used, whenever necessary, to complement life cycle data, thus allowing a more accurate sustainability evaluation. A comparative analysis of the biodiesel life cycle steps was also conducted, with the main goal of identifying which steps need to be improved. Results show that biomass processing, especially cell harvesting, microalgae cultivation, and lipids extraction are the main process bottlenecks. It is also analysed the influence on the microalgae biodiesel sustainability of adding each pentose sugar to the cultivation media, concluding that it strongly influences the biomass and lipid productivity. In particular, the addition of xylose is preferable in terms of lipid productivity, but from a sustainability point of view, ribose is the best, though the difference from xylose is not significant. Nevertheless, culture without pentose addition presents the best sustainability results.
Resumo:
This work presents and analyses the fat and fuel properties and the methyl ester profile of biodiesel from animal fats and fish oil (beef tallow, pork lard, chicken fat and sardine oil). Also, their sustainability is evaluated in comparison with rapeseed biodiesel and fossil diesel, currently the dominant liquid fuels for transportation in Europe. Results show that from a technological point of view it is possible to use animal fats and fish oil as feedstock for biodiesel production. From the sustainability perspective, beef tallow biodiesel seems to be the most sustainable one, as its contribution to global warming has the same value of fossil diesel and in terms of energy efficiency it has the best value of the biodiesels under consideration. Although biodiesel is not so energy efficient as fossil diesel there is room to improve it, for example, by replacing the fossil energy used in the process with renewable energy generated using co-products (e.g. straw, biomass cake, glycerine).
Resumo:
A very important part of the globally produced energy is consumed in buildings, being an important share frequently used in the HVAC systems. These ones are increasing both in performance and in complexity, taking advantage from the use of the recent advances in mechanical and power electronic devices, particularly in the speed variation field. However the improved efficiency only occurs while the HVAC unit is working in the conditions specified by the manufacturer, otherwise the energy consumption raises to values considerably higher than the nominal ones. The adequate maintenance enforces the system to run on its nominal performance and the contrary has undesirable impact both in the performance and in the system expected life time. Therefore, HVAC field maintenance assumes a very important role in the global building sustainability concept. This work presents some results of an incorrect use of HVAC and the associated electric energy overconsumption that can assume values 50% higher than those that occur when the installation is operated according to the adequate maintenance plan.
Resumo:
Recent Advances in Mechanics and Materials in Design
Resumo:
From the forest management perspective, many definitions have been proposed for the concept of forest sustainability. Despite this apparent diversity, most of them converge on the same aspects. In this work we developed a comparative approach of two distinct forest management methodologies used in Europe, more precisely in Slovenia and in Portugal. Although in each case study differences in vegetation, climate and pedological characteristics are evident, we were able to show some peculiar aspects of both the Slovenian and the Portuguese examples. This study also dealt with the evolution of the term sustainability in the last decades and how it played an important role for forest management options.