846 resultados para e-Learning, Learning Management Systems, SCORM, Learning Styles, Tutoring System
Resumo:
Soil organic matter (SOM) plays a crucial role in soil quality and can act as an atmospheric C-CO2 sink under conservationist management systems. This study aimed to evaluate the long-term effects (19 years) of tillage (CT-conventional tillage and NT-no tillage) and crop rotations (R0-monoculture system, R1-winter crop rotation, and R2- intensive crop rotation) on total, particulate and mineral-associated organic carbon (C) stocks of an originally degraded Red Oxisol in Cruz Alta, RS, Southern Brazil. The climate is humid subtropical Cfa 2a (Köppen classification), the mean annual precipitation 1,774 mm and mean annual temperature 19.2 ºC. The plots were divided into four segments, of which each was sampled in the layers 0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m. Sampling was performed manually by opening small trenches. The SOM pools were determined by physical fractionation. Soil C stocks had a linear relationship with annual crop C inputs, regardless of the tillage systems. Thus, soil disturbance had a minor effect on SOM turnover. In the 0-0.30 m layer, soil C sequestration ranged from 0 to 0.51 Mg ha-1 yr-1, using the CT R0 treatment as base-line; crop rotation systems had more influence on soil stock C than tillage systems. The mean C sequestration rate of the cropping systems was 0.13 Mg ha-1 yr-1 higher in NT than CT. This result was associated to the higher C input by crops due to the improvement in soil quality under long-term no-tillage. The particulate C fraction was a sensitive indicator of soil management quality, while mineral-associated organic C was the main pool of atmospheric C fixed in this clayey Oxisol. The C retention in this stable SOM fraction accounts for 81 and 89 % of total C sequestration in the treatments NT R1 and NT R2, respectively, in relation to the same cropping systems under CT. The highest C management index was observed in NT R2, confirming the capacity of this soil management practice to improve the soil C stock qualitatively in relation to CT R0. The results highlighted the diversification of crop rotation with cover crops as a crucial strategy for atmospheric C-CO2 sequestration and SOM quality improvement in highly weathered subtropical Oxisols.
Resumo:
Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0- monoculture system (soybean/wheat), (b) R1- winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat). The soil C-CO2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO2 evolution. Soil C-CO2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.
Microbial biomass and soil chemical properties under different land use systems in northeastern Pará
Resumo:
The increase in agricultural production in the Brazilian Amazon region is mostly a result of the agricultural frontier expansion, into areas previously influenced by humans or of native vegetation. At the same time, burning is still used to clear areas in small-scale agricultural systems, leading to a loss of the soil productive capacity shortly after, forcing the opening of new areas. This study had the objective of evaluating the effect of soil preparation methods that involve plant residue shredding, left on the surface or incorporated to the soil, with or without chemical fertilization, on the soil chemical and biological properties. The experiment was conducted in 1995, in an experimental field of Yellow Latosol (Oxisol) of the Embrapa Amazônia Oriental, northeastern Pará (Brazil). The experiment was arranged in randomized blocks, in a 2x6 factorial design, with two management systems and six treatments evaluated twice. The management systems consisted of rice (Oriza sativa), followed by cowpea (Vigna unguiculata) with manioc (Manihot esculenta). In the first system the crops were planted in two consecutive cycles, followed by a three-year fallow period (natural regrowth); the second system consisted of one cultivation cycle and was left fallow for three years. The following treatments were applied to the secondary forest vegetation: slash and burn, fertilized with NPK (Q+NPK); slash and burn, without fertilizer NPK (Q-NPK); cutting and shredding, leaving the residues on the soil surface, fertilized with NPK (C+NPK); cutting and shredding, leaving residues on the soil surface, without fertilizer (C-NPK); cutting and shredding, with residue incorporation and fertilized with NPK (I+NPK); cutting and shredding, with residue incorporation and without NPK fertilizer (I-NPK). The soil was sampled in the rainier season (April 2006) and in the drier season (September 2006), in the 0-0.1 m layer. From each plot, 10 simple samples were collected in order to generate a composite sample. In the more intensive management system the contents of microbial C (Cmic) and microbial N (Nmic) were higher, while the C (Corg) level was higher in the less intensive system. The treatments with highest Cmic and Nmic levels were those with cutting, shredding and distribution of biomass on the soil surface. Under both management systems, the chemical characteristics were in ranges that classify the soil as little fertile, although P and K (in the rainy season) were higher in the less intensive management system.
Resumo:
In the semiarid region of Brazil, inadequate management of cropping systems and low plant biomass production can contribute to reduce soil carbon (C) and nitrogen (N) stocks; therefore, management systems that preserve C and N must be adopted. This study aimed to evaluate the changes in soil C and N stocks that were promoted by agroforestry (agrosilvopastoral and silvopastoral) and traditional agricultural systems (slash-and-burn clearing and cultivation for two and three years) and to compare these systems with the natural Caatinga vegetation after 13 years of cultivation. The experiment was carried out on a typical Ortic Chromic Luvisol in the municipality of Sobral, Ceará, Brazil. Soil samples were collected (layers 0-6, 6-12, 12-20, 20-40 and 40-60 cm) with four replications. The plain, convex and concave landforms in each study situation were analyzed, and the total organic C, total N and densities of the soil samples were assessed. The silvopastoral system promoted the greatest long-term reductions in C and N stocks, while the agrosilvopastoral system promoted the smallest losses and therefore represents a sustainable alternative for soil C and N sequestration in these semiarid conditions. The traditional agricultural system produced reductions of 58.87 and 9.57 Mg ha-1 in the organic C and total N stocks, respectively, which suggests that this system is inadequate for these semiarid conditions. The organic C stocks were largest in the concave landform in the agrosilvopastoral system and in the plain landform in the silvopastoral system, while the total N values were highest in the concave landform in the native, agrosilvopastoral and silvopastoral systems.
Resumo:
Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.
Resumo:
Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.
Resumo:
Agricultural production systems that include the production of mulch for no-tillage farming and structural improvement of the soil can be considered key measures for agricultural activity in the Cerrado region without causing environmental degradation. In this respect, our work aimed to evaluate the chemical and physical-hydric properties of a dystrophic Red Latosol (Oxisol) in the municipality of Rio Verde, Goias, Brazil, under different soil management systems in the between-crop season of soybean cultivation five years after first planting. The following conditions were evaluated: Brachiaria brizantha cv. Marandu as a cover crop during the between-crop season; Second crop of maize intercropped with Brachiaria ruziziensis; Second crop of grain alone in a no-tillage system; Fallow soil after the soybean harvest; and Forest (natural vegetation) located in an adjacent area. Soil samples up to a depth of 40 cm were taken and used in the assessment of chemical properties and soil structure diagnostics. The results demonstrated that the conversion of native vegetation areas into agricultural fields altered the chemical and physical-hydric properties of the soil at all the depths evaluated, especially up to 10 cm, due to the activity of root systems in the soil structure. Cultivation of B. brizantha as a cover crop during the summer between-crop season increased soil water availability, which is important for agricultural activities in the region under study.
Resumo:
Studies testing the High Energy Moisture Characteristic (HEMC) technique in tropical soils are still incipient. By this method, the effects of different management systems can be evaluated. This study investigated the aggregation state of an Oxisol under coffee with Brachiaria between crop rows and surface-applied gypsum rates using HEMC. Soil in an experimental area in the Upper São Francisco region, Minas Gerais, was studied at depths of 0.05 and 0.20 m in coffee rows. The treatments consisted of 0, 7, and 28 Mg ha-1 of agricultural gypsum rates distributed on the soil surface of the coffee rows, between which Brachiaria was grown and periodically cut, and compared with a treatment without Brachiaria between coffee rows and no gypsum application. To determine the aggregation state using the HEMC method, soil aggregates were placed in a Büchner funnel (500 mL) and wetted using a peristaltic pump with a volumetric syringe. The wetting was applied increasingly at two pre-set speeds: slow (2 mm h-1) and fast (100 mm h-1). Once saturated, the aggregates were exposed to a gradually increasing tension by the displacement of a water column (varying from 0 to 30 cm) to obtain the moisture retention curve [M = f (Ψ) ], underlying the calculation of the stability parameters: modal suction, volume of drainable pores (VDP), stability index (slow and fast), VDP ratio, and stability ratio. The HEMC method conferred sensitivity in quantifying the aggregate stability parameters, and independent of whether gypsum was used, the soil managed with Brachiaria between the coffee rows, with regular cuts discharged in the crop row direction, exhibited a decreased susceptibility to disaggregation.
Resumo:
Quantification of soil physical quality (SPQ) and pore size distribution (PSD) can assist understanding of how changes in land management practices influence dynamics of soil structure, and this understanding could greatly improve the predictability of soil physical behavior and crop yield. The objectives of this study were to measure the SPQ index under two different land management practices (the continuous arable cropping system and natural bush fallow system), and contrast the effects of these practices on the structure of PSD using soil water retention data. Soil water retention curves obtained from a pressure chamber were fitted to van Genuchten’s equation, setting m (= 1-1/n). Although values for soil bulk density were high, soils under the continuous arable cropping system had good SPQ, and maintained the capacity to support root development. However, soils under the natural bush fallow system had a worse structure than the continuous arable system, with restrictions in available water capacity. These two management systems had different PSDs. Results showed the inferiority of the natural bush fallow system with no traffic restriction (which is the common practice) in relation to the continuous arable cropping system in regard to physical quality and structure.
Resumo:
To evaluate the effect of soil management systems on population of white grubs, (Phyllophaga cuyabana Moser), and on its damage in soybean, experiments were set up under no-tillage and conventional tillage (one disk plow, and a leveling disk harrow) areas. Primary tillage equipment, used in other soil management systems, such as moldboard plow, disk plow, chisel plow and heavy duty disk harrow were also tested. Fluctuation of P. cuyabana population and the extent of its damage to soybean was similar under no-tillage and conventional tillage systems. Results comparing a range of primary tillage equipment showed that it affected soil insect populations differently, depending on the time during the season in which tillage was executed. Larval mortality could mostly be attributed to their exposure to adverse factors, soon after tillage, than to changes in soil conditions. Reduction of white grub population was more evident in plots managed by heavier equipment, such as the moldboard plow. Soil tillage could be one component within the soil pest management system in soybean, however, its use can not be generalized.
Resumo:
The objective of this work was to evaluate the effect of pond management on fish feed, growth, yield, survival, and water and effluent quality, during tambaqui (Colossoma macropomum) juvenile production. Fish were distributed in nine 600 m² earthen ponds, at a density of 8 fish per m²; the rearing period was 60 days. Three different pond management were applied: limed and fertilized (LimFer), limed (Lim), and natural (Nat). Fish were fed with a commercial ration containing 34% crude protein three times daily. There were no significant differences in fish growth or yield. Three main items found in tambaqui stomach were insect, zooplankton and ration, without a significant difference among treatments in proportion. Alkalinity, hardness, and CO2 were greater in LimFer and Lim ponds. Chlorophyll a, transparency, ammonia, nitrite, temperature, and dissolved oxygen of pond water were not significantly different among treatments. Biochemical oxygen demand, total phosphorus, orthophosphate, ammonia, and nitrite were significantly greater in effluents from LimFer ponds. Pond fertilization should be avoided, because growth and yield were similar among the three pond management systems tested; besides, it produces a more impacting effluent.
Resumo:
The objective of this work was to assess the effects of integrated crop-livestock systems, associated with two tillage and two fertilization regimes, on the abundance and diversity of the soil macrofauna. Four different management systems were studied: continuous pasture (mixed grass); continuous crop; two crop-livestock rotations (crop/pasture and pasture/crop); and native Cerrado as a control. Macrofauna was sampled using a modified Tropical Soil Biology and Fertility method, and all individuals were counted and identified at the morphospecies level for each plot. A total of 194 morphospecies were found, distributed among 30 groups, and the most representative in decreasing order of density were: Isoptera, Coleoptera larvae, Formicidae, Oligochaeta, Coleoptera adult, Diplopoda, Hemiptera, Diptera larvae, Arachnida, Chilopoda, Lepidoptera, Gasteropoda, Blattodea and Orthoptera. Soil management systems and tillage regimes affected the structure of soil macrofauna, and integrated crop-livestock systems, associated with no-tillage, especially with grass/legume species associations, had more favorable conditions for the development of "soil engineers" compared with continuous pasture or arable crops. Soil macrofauna density and diversity, assessed at morphospecies level, are effective data to measure the impact of land use in Cerrado soils.
Resumo:
Työ tutkii yritysportaalin roolia organisaation tietojohtamisessa. Tutkimusongelman ratkaisemiseksi luodaan viitekehys, jossa yritysportaalin ja tietojohtamisen teoriat linkittyvät. Työn empiirisessä osassa viitekehys on pohjana case-yritykselle rakennettavalle yritysportaalille. Laadullinen tutkimus käsittää teoriaosuuden sekä osallistuvaan case-tutkimukseen perustuvan empiriaosuuden. Työn runko muodostuu kahden vastakkaisen tietojohtamisajattelun vuoropuhelusta, jotka ovat informaatioteknologiaan- ja strategiseen johtamiseen perustuvat näkökulmat. Toimivan tietojohtamismallin täytyy sisältää molemmat aspektit. Jokainen organisaatio tarvitsee informaation hallintaan liittyviä toiminnallisuuksia ja täten eksplisiittisen tiedon hallinta tietojärjestelmien avulla on onnistuneen tietojohtamisen kulmakiviä. Tätä perusinfrastruktuuria on mahdollista laajentaa hiljaisen tiedon hallintaan perustuvilla tietojohtamismenetelmillä. Työn ratkaisu näiden kahden näkemyksen, 'kovan' informaatioteknogiaan painottuvan sekä 'pehmeän' ihmisnäkökulman integrointiin, on yritysportaali. Työssä käytettävä yritysportaalin viitekehys rakentuu kolmeen päätoiminnallisuuteen; sisällönhallintaan, yhteistyöominaisuuksiin ja liiketoimintatiedon hallintaan. Työ todistaa yhteyden viitekehyksen sekä tietojohtamisen perusmallien, kuten tietojohtamisen prosessimallin sekä tietoympäristöjen välillä. Yritysportaali voi täten toimia, ei ainoastaan yksittäisten tietojohtamistyökalujen implementoinnissa, vaan tietojohtamisstrategian luomisen apuna tarjoten alustan tai 'katalyytin' kokonaisvaltaiselle tietojohtamiselle.
Resumo:
Integration of biological data of various types and the development of adapted bioinformatics tools represent critical objectives to enable research at the systems level. The European Network of Excellence ENFIN is engaged in developing an adapted infrastructure to connect databases, and platforms to enable both the generation of new bioinformatics tools and the experimental validation of computational predictions. With the aim of bridging the gap existing between standard wet laboratories and bioinformatics, the ENFIN Network runs integrative research projects to bring the latest computational techniques to bear directly on questions dedicated to systems biology in the wet laboratory environment. The Network maintains internally close collaboration between experimental and computational research, enabling a permanent cycling of experimental validation and improvement of computational prediction methods. The computational work includes the development of a database infrastructure (EnCORE), bioinformatics analysis methods and a novel platform for protein function analysis FuncNet.
Resumo:
Quality management has become a strategic issue for organisations and is very valuable to produce quality software. However, quality management systems (QMS) are not easy to implement and maintain. The authors' experience shows the benefits of developing a QMS by first formalising it using semantic web ontologies and then putting them into practice through a semantic wiki. The QMS ontology that has been developed captures the core concepts of a traditional QMS and combines them with concepts coming from the MPIu'a development process model, which is geared towards obtaining usable and accessible software products. Then, the ontology semantics is directly put into play by a semantics-aware tool, the Semantic MediaWiki. The developed QMS tool is being used for 2 years by the GRIHO research group, where it has manages almost 50 software development projects taking into account the quality management issues. It has also been externally audited by a quality certification organisation. Its users are very satisfied with their daily work with the tool, which manages all the documents created during project development and also allows them to collaborate, thanks to the wiki features.