934 resultados para dynamic systems theory
Resumo:
The basis set superposition error-free second-order MØller-Plesset perturbation theory of intermolecular interactions was studied. The difficulties of the counterpoise (CP) correction in open-shell systems were also discussed. The calculations were performed by a program which was used for testing the new variants of the theory. It was shown that the CP correction for the diabatic surfaces should be preferred to the adiabatic ones
Resumo:
The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares 〈 V2 〉 and the energies of basepair triplets X G+ Y and X A+ Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B -DNA structure and show that in several important cases the couplings calculated for the idealized B -DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ∼0.07 eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The X G+ Y are by 0.5 eV more stable than X A+ Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA
Resumo:
El sistema de fangs activats és el tractament biològic més àmpliament utilitzat arreu del món per la depuració d'aigües residuals. El seu funcionament depèn de la correcta operació tant del reactor biològic com del decantador secundari. Quan la fase de sedimentació no es realitza correctament, la biomassa no decantada s'escapa amb l'efluent causant un impacte sobre el medi receptor. Els problemes de separació de sòlids, són actualment una de les principals causes d'ineficiència en l'operació dels sistemes de fangs activats arreu del món. Inclouen: bulking filamentós, bulking viscós, escumes biològiques, creixement dispers, flòcul pin-point i desnitrificació incontrolada. L'origen dels problemes de separació generalment es troba en un desequilibri entre les principals comunitats de microorganismes implicades en la sedimentació de la biomassa: els bacteris formadors de flòcul i els bacteris filamentosos. Degut a aquest origen microbiològic, la seva identificació i control no és una tasca fàcil pels caps de planta. Els Sistemes de Suport a la Presa de Decisions basats en el coneixement (KBDSS) són un grup d'eines informàtiques caracteritzades per la seva capacitat de representar coneixement heurístic i tractar grans quantitats de dades. L'objectiu de la present tesi és el desenvolupament i validació d'un KBDSS específicament dissenyat per donar suport als caps de planta en el control dels problemes de separació de sòlids d'orígen microbiològic en els sistemes de fangs activats. Per aconseguir aquest objectiu principal, el KBDSS ha de presentar les següents característiques: (1) la implementació del sistema ha de ser viable i realista per garantir el seu correcte funcionament; (2) el raonament del sistema ha de ser dinàmic i evolutiu per adaptar-se a les necessitats del domini al qual es vol aplicar i (3) el raonament del sistema ha de ser intel·ligent. En primer lloc, a fi de garantir la viabilitat del sistema, s'ha realitzat un estudi a petita escala (Catalunya) que ha permès determinar tant les variables més utilitzades per a la diagnosi i monitorització dels problemes i els mètodes de control més viables, com la detecció de les principals limitacions que el sistema hauria de resoldre. Els resultats d'anteriors aplicacions han demostrat que la principal limitació en el desenvolupament de KBDSSs és l'estructura de la base de coneixement (KB), on es representa tot el coneixement adquirit sobre el domini, juntament amb els processos de raonament a seguir. En el nostre cas, tenint en compte la dinàmica del domini, aquestes limitacions es podrien veure incrementades si aquest disseny no fos òptim. En aquest sentit, s'ha proposat el Domino Model com a eina per dissenyar conceptualment el sistema. Finalment, segons el darrer objectiu referent al seguiment d'un raonament intel·ligent, l'ús d'un Sistema Expert (basat en coneixement expert) i l'ús d'un Sistema de Raonament Basat en Casos (basat en l'experiència) han estat integrats com els principals sistemes intel·ligents encarregats de dur a terme el raonament del KBDSS. Als capítols 5 i 6 respectivament, es presenten el desenvolupament del Sistema Expert dinàmic (ES) i del Sistema de Raonament Basat en Casos temporal, anomenat Sistema de Raonament Basat en Episodis (EBRS). A continuació, al capítol 7, es presenten detalls de la implementació del sistema global (KBDSS) en l'entorn G2. Seguidament, al capítol 8, es mostren els resultats obtinguts durant els 11 mesos de validació del sistema, on aspectes com la precisió, capacitat i utilitat del sistema han estat validats tant experimentalment (prèviament a la implementació) com a partir de la seva implementació real a l'EDAR de Girona. Finalment, al capítol 9 s'enumeren les principals conclusions derivades de la present tesi.
Resumo:
Esta tesis está enfocada al diseño y validación de controladores robustos que pueden reducir de una manera efectiva las vibraciones structurales producidas por perturbaciones externas tales como terremotos, fuertes vientos o cargas pesadas. Los controladores están diseñados basados en teorías de control tradicionalamente usadas en esta area: Teoría de estabilidad de Lyapunov, control en modo deslizante y control clipped-optimal, una técnica reciente mente introducida : Control Backstepping y una que no había sido usada antes: Quantitative Feedback Theory. La principal contribución al usar las anteriores técnicas, es la solución de problemas de control estructural abiertos tales como dinámicas de actuador, perturbaciones desconocidas, parametros inciertos y acoplamientos dinámicos. Se utilizan estructuras típicas para validar numéricamente los controladores propuestos. Especificamente las estructuras son un edificio de base aislada, una plataforma estructural puente-camión y un puente de 2 tramos, cuya configuración de control es tal que uno o mas problemas abiertos están presentes. Se utilizan tres prototipos experimentales para implementar los controladores robustos propuestos, con el fin de validar experimentalmente su efectividad y viabilidad. El principal resultado obtenido con la presente tesis es el diseño e implementación de controladores estructurales robustos que resultan efectivos para resolver problemas abiertos en control estructural tales como dinámicas de actuador, parámetros inciertos, acoplamientos dinámicos, limitación de medidas y perturbaciones desconocidas.
Resumo:
Mathematical models have been vitally important in the development of technologies in building engineering. A literature review identifies that linear models are the most widely used building simulation models. The advent of intelligent buildings has added new challenges in the application of the existing models as an intelligent building requires learning and self-adjusting capabilities based on environmental and occupants' factors. It is therefore argued that the linearity is an impropriate basis for any model of either complex building systems or occupant behaviours for control or whatever purpose. Chaos and complexity theory reflects nonlinear dynamic properties of the intelligent systems excised by occupants and environment and has been used widely in modelling various engineering, natural and social systems. It is proposed that chaos and complexity theory be applied to study intelligent buildings. This paper gives a brief description of chaos and complexity theory and presents its current positioning, recent developments in building engineering research and future potential applications to intelligent building studies, which provides a bridge between chaos and complexity theory and intelligent building research.
Resumo:
Dynamic neural networks (DNNs), which are also known as recurrent neural networks, are often used for nonlinear system identification. The main contribution of this letter is the introduction of an efficient parameterization of a class of DNNs. Having to adjust less parameters simplifies the training problem and leads to more parsimonious models. The parameterization is based on approximation theory dealing with the ability of a class of DNNs to approximate finite trajectories of nonautonomous systems. The use of the proposed parameterization is illustrated through a numerical example, using data from a nonlinear model of a magnetic levitation system.
Resumo:
A dynamic recurrent neural network (DRNN) that can be viewed as a generalisation of the Hopfield neural network is proposed to identify and control a class of control affine systems. In this approach, the identified network is used in the context of the differential geometric control to synthesise a state feedback that cancels the nonlinear terms of the plant yielding a linear plant which can then be controlled using a standard PID controller.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
One of the most pervading concepts underlying computational models of information processing in the brain is linear input integration of rate coded uni-variate information by neurons. After a suitable learning process this results in neuronal structures that statically represent knowledge as a vector of real valued synaptic weights. Although this general framework has contributed to the many successes of connectionism, in this paper we argue that for all but the most basic of cognitive processes, a more complex, multi-variate dynamic neural coding mechanism is required - knowledge should not be spacially bound to a particular neuron or group of neurons. We conclude the paper with discussion of a simple experiment that illustrates dynamic knowledge representation in a spiking neuron connectionist system.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.