955 resultados para dynamic elastic modulus
Resumo:
Primary olfactory neurons are located in the olfactory neuroepithelium lining the nasal cavity. Their axons converge and form glomeruli with the dendrites of second-order neurons in the olfactory bulb. The molecular basis of primary olfactory axon guidance, targeting and subsequent arborisation is largely unknown. In this study we examined the spatio-temporal expression of the Eph receptor EphB2 and its ligands, ephrin-B1 and ephrin-B2, during development of the rat primary olfactory system. Unlike in other regions of the nervous system where receptor and ligand expression patterns are usually non-overlapping, EphB2, ephrin-B1 and ephrin-B2 were all expressed by primary and second-order olfactory neurons. In the embryonic animal we found that these three proteins had distinct and different expression patterns. EphB2 was first expressed at E18.5 by the perikarya of primary olfactory neurons. In contrast, ephrin-B1 was expressed from E13.5 and was localised to the axons of these cells up to E18.5 but was then restricted to the perikarya. Ephrin-B2, however, was expressed by olfactory ensheathing cells. EphB2, ephrin-B1 and ephrin-B2 were also expressed in the prenatal olfactory bulb and were restricted to the perikarya of mitral cells. In the post-natal olfactory bulb there was a shift in the localisation of both EphB2 and ephrin-B1 to the dendritic arborisations of mitral cells. The dynamic and tightly regulated spatio-temporal expression patterns of EphB2, ephrin-B1 and ephrin-B2 by specific olfactory cell populations suggest that these molecules have the potential to regulate important developmental events in the olfactory system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The study to be presented is the first to use a new physiological device, the electromagnetic articulograph, to assess articulatory dysfunction in children with acquired brain injury. Two children with dysarthria subsequent to acquired brain injury participated in the study. One child, a female aged 12 years 9 months exhibited a mild-moderate ataxic dysarthria following traumatic head injury while the other, a male aged 13 years 10 months, demonstrated a moderate-severe flaccid-ataxic dysarthria also following traumatic head injury. The speed and accuracy of their tongue movements was assessed using the Carstens AG100 electromagnetic articulograph. Movement trajectories together with a range of quantitative kinematic parameters were estimated during performance of ten repetitions of the lingual consonants /t, s, k/ and consonant cluster /kl/ in the word initial position of single syllable words. A group of ten non-neurologically impaired children served as controls. Examination of the kinematic parameters, including movement trajectories, velocity, acceleration, deceleration, distance travelled and duration of movement, revealed differences in the speed and accuracy of the tongue movements in both children with acquired brain injury compared to those produced by the non-neurologically impaired controls. The results are discussed in relation to contemporary theories of the effects of acquired brain injury on neuromuscular function. The implications of the findings for the treatment of articulatory dysfunction in children with motor speech disorders associated with acquired brain injury are highlighted.
Resumo:
Observations of accelerating seismic activity prior to large earthquakes in natural fault systems have raised hopes for intermediate-term eartquake forecasting. If this phenomena does exist, then what causes it to occur? Recent theoretical work suggests that the accelerating seismic release sequence is a symptom of increasing long-wavelength stress correlation in the fault region. A more traditional explanation, based on Reid's elastic rebound theory, argues that an accelerating sequence of seismic energy release could be a consequence of increasing stress in a fault system whose stress moment release is dominated by large events. Both of these theories are examined using two discrete models of seismicity: a Burridge-Knopoff block-slider model and an elastic continuum based model. Both models display an accelerating release of seismic energy prior to large simulated earthquakes. In both models there is a correlation between the rate of seismic energy release with the total root-mean-squared stress and the level of long-wavelength stress correlation. Furthermore, both models exhibit a systematic increase in the number of large events at high stress and high long-wavelength stress correlation levels. These results suggest that either explanation is plausible for the accelerating moment release in the models examined. A statistical model based on the Burridge-Knopoff block-slider is constructed which indicates that stress alone is sufficient to produce accelerating release of seismic energy with time prior to a large earthquake.
Resumo:
We have studied the spatial dynamics of Sry transcription in the genital ridges of mouse embryos. We find that Sry is expressed in a dynamic wave that emanates from the central and/or anterior regions, extends subsequently to both poles, and ends in the caudal pole. This dynamism may explain the relative positioning of ovarian and testicular tissue seen in ovotestes in mice. Since direct regulatory targets of SRY ought to be expressed in a corresponding or complimentary wave, our observations pave the way for identification of target genes. Sry is expressed in internal cells but not in coelomic surface epithelial cells, indicating that its effect on proliferation of surface cells is achieved non-cell-autonomously. The cellular dynamism of Sry expression revealed in this study thus provides important insights into both the cellular and molecular mode of action of SRY, and how perturbations in Sry expression can lead to anomalies of sexual development. (C) 2001 Wiley-Liss, Inc.
Resumo:
We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.
Resumo:
The temperature dependence of the X- and Q-band EPR spectra of Cs-2[Zn(H2O)(6)](ZrF6)(2) containing similar to1% Cu2+ is reported. All three molecular g-values vary with temperature, and their behavior is interpreted using a model in which the potential surface of the Jahn-Teller distorted Cu(H2O)(6)(2+) ion is perturbed by an orthorhombic strain induced by interactions with the surrounding lattice. The strain parameters are significantly smaller than those reported previously for the Cu(H2O)(6)(2+) ion in similar lattices. The temperature dependence of the two higher g-values suggests that in the present compound the lattice interactions change slightly with temperature. The crystal structure of the Cs-2[Zn(H2O)(6)](ZrF6)(2) host is reported, and the geometry of the Zn(H2O)(6)(2+) ion is correlated with lattice strain parameters derived from the EPR spectrum of the guest Cu2+ complex.
Resumo:
The dynamic theological behaviour of gamma-irradiated 12.8 wt% poly(vinyl alcohol) (PVA), 12.8 wt% poly(vinyl pyrrolidone) (PVP), and a blend of 8 wt% PVA and 4.8 wt% PVP aqueous solutions have been studied pre- and post-gelation. The non-irradiated solutions displayed theological behaviour typical of dilute to semi-dilute polymer solutions, with the complex viscosity being independent of the frequency and shear rate (i.e. Newtonian behaviour) over the range of frequencies tested and the loss modulus G(omega) and storage modulus G(omega) being nearly proportional to omega and omega(2) respectively. After a set of doses of gamma-radiation, the magnitudes of the dynamic moduli G'(omega) and G(omega) increased as the absorbed dose increased, with notable differences between the two homopolymers and the blend. The stages of gelation were effectively monitored by means of dynamic theological measurements, allowing the possible mechanisms of network formation to be elucidated. The doses required for gelation of the PVA, PVP, and blend samples, determined on the basis of the Winter and Chambon criteria for gelation, were found to be 12 kGy for the 12.8 wt% PVA, 4 kGy for the 12.8 wt% PVP, and 5 kGy for the 8 wt% PVA/4.8 wt% PVP solutions. The unexpected lower gelation dose demonstrated by the blend sample, compared with predictions based on the blend composition, and the associated gelation mechanism are also discussed.
Resumo:
This theoretical note describes an expansion of the behavioral prediction equation, in line with the greater complexity encountered in models of structured learning theory (R. B. Cattell, 1996a). This presents learning theory with a vector substitute for the simpler scalar quantities by which traditional Pavlovian-Skinnerian models have hitherto been represented. Structured learning can be demonstrated by vector changes across a range of intrapersonal psychological variables (ability, personality, motivation, and state constructs). Its use with motivational dynamic trait measures (R. B. Cattell, 1985) should reveal new theoretical possibilities for scientifically monitoring change processes (dynamic calculus model; R. B. Cattell, 1996b), such as encountered within psycho therapeutic settings (R. B. Cattell, 1987). The enhanced behavioral prediction equation suggests that static conceptualizations of personality structure such as the Big Five model are less than optimal.
Resumo:
The widespread adoption of soil conservation technologies by farmers (notably contour hedgerows) observed in Guba, Cebu City, Philippines, is not often observed elsewhere In the country. Adoption of these technologies was because of the interaction of such phenomena as site-specific factors, appropriate extension systems, and technologies. However, lack of hedgerow maintenance, decreasing hedgerow quality, and disappearance of hedgerows raised concerns about sustainability. The dynamic nature of upland farming systems suggests the need for a location-specific farming system development framework, which provides farmers with ongoing extension for continual promotion of appropriate conservation practices.
Resumo:
It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.
Resumo:
A new model to predict the extent of crushing around a blasthole is presented. The model is based on the back-analysis of a comprehensive experimental program that included the direct measurement of the zone of crushing from 92 blasting tests on concrete blocks using two commercial explosives. The concrete blocks varied from low, medium to high strength and measured 1.5 in in length, 1.0 m in width and 1.1 m in height. A dimensionless parameter called the crushing zone index (CZI) is introduced. This index measures the crushing potential of a charged blasthole and is a function of the borehole pressure, the unconfined compressive strength of the rock material, dynamic Young's modulus and Poisson's ratio. It is shown that the radius of crushing is a function of the CZI and the blasthole radius. A good correlation between the new model and measured results was obtained. A number of previously proposed models could not approximate the conditions measured in the experimental work and there are noted discrepancies between the different approaches reviewed, particularly for smaller diameter holes and low strength rock conditions. The new model has been verified with full scale tests reported in the literature. Results from this validation and model evaluations show its applicability to production blasting. (C) 2003 Elsevier Science Ltd. All rights reserved.