932 resultados para distributed computing projects
Resumo:
Dissertação para obtenção do Grau de Doutor em Química
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Química, perfil de Química Física, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
From a narratological perspective, this paper aims to address the theoretical issues concerning the functioning of the so called «narrative bifurcation» in data presentation and information retrieval. Its use in cyberspace calls for a reassessment as a storytelling device. Films have shown its fundamental role for the creation of suspense. Interactive fiction and games have unveiled the possibility of plots with multiple choices, giving continuity to cinema split-screen experiences. Using practical examples, this paper will show how this storytelling tool returns to its primitive form and ends up by conditioning cloud computing interface design.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
The Graphics Processing Unit (GPU) is present in almost every modern day personal computer. Despite its specific purpose design, they have been increasingly used for general computations with very good results. Hence, there is a growing effort from the community to seamlessly integrate this kind of devices in everyday computing. However, to fully exploit the potential of a system comprising GPUs and CPUs, these devices should be presented to the programmer as a single platform. The efficient combination of the power of CPU and GPU devices is highly dependent on each device’s characteristics, resulting in platform specific applications that cannot be ported to different systems. Also, the most efficient work balance among devices is highly dependable on the computations to be performed and respective data sizes. In this work, we propose a solution for heterogeneous environments based on the abstraction level provided by algorithmic skeletons. Our goal is to take full advantage of the power of all CPU and GPU devices present in a system, without the need for different kernel implementations nor explicit work-distribution.To that end, we extended Marrow, an algorithmic skeleton framework for multi-GPUs, to support CPU computations and efficiently balance the work-load between devices. Our approach is based on an offline training execution that identifies the ideal work balance and platform configurations for a given application and input data size. The evaluation of this work shows that the combination of CPU and GPU devices can significantly boost the performance of our benchmarks in the tested environments, when compared to GPU-only executions.
Resumo:
Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.
Resumo:
The Corporate world is becoming more and more competitive. This leads organisations to adapt to this reality, by adopting more efficient processes, which result in a decrease in cost as well as an increase of product quality. One of these processes consists in making proposals to clients, which necessarily include a cost estimation of the project. This estimation is the main focus of this project. In particular, one of the goals is to evaluate which estimation models fit the Altran Portugal software factory the most, the organization where the fieldwork of this thesis will be carried out. There is no broad agreement about which is the type of estimation model more suitable to be used in software projects. Concerning contexts where there is plenty of objective information available to be used as input to an estimation model, model-based methods usually yield better results than the expert judgment. However, what happens more frequently is not having this volume and quality of information, which has a negative impact in the model-based methods performance, favouring the usage of expert judgement. In practice, most organisations use expert judgment, making themselves dependent on the expert. A common problem found is that the performance of the expert’s estimation depends on his previous experience with identical projects. This means that when new types of projects arrive, the estimation will have an unpredictable accuracy. Moreover, different experts will make different estimates, based on their individual experience. As a result, the company will not directly attain a continuous growing knowledge about how the estimate should be carried. Estimation models depend on the input information collected from previous projects, the size of the project database and the resources available. Altran currently does not store the input information from previous projects in a systematic way. It has a small project database and a team of experts. Our work is targeted to companies that operate in similar contexts. We start by gathering information from the organisation in order to identify which estimation approaches can be applied considering the organization’s context. A gap analysis is used to understand what type of information the company would have to collect so that other approaches would become available. Based on our assessment, in our opinion, expert judgment is the most adequate approach for Altran Portugal, in the current context. We analysed past development and evolution projects from Altran Portugal and assessed their estimates. This resulted in the identification of common estimation deviations, errors, and patterns, which lead to the proposal of metrics to help estimators produce estimates leveraging past projects quantitative and qualitative information in a convenient way. This dissertation aims to contribute to more realistic estimates, by identifying shortcomings in the current estimation process and supporting the self-improvement of the process, by gathering as much relevant information as possible from each finished project.
Resumo:
The Intel R Xeon PhiTM is the first processor based on Intel’s MIC (Many Integrated Cores) architecture. It is a co-processor specially tailored for data-parallel computations, whose basic architectural design is similar to the ones of GPUs (Graphics Processing Units), leveraging the use of many integrated low computational cores to perform parallel computations. The main novelty of the MIC architecture, relatively to GPUs, is its compatibility with the Intel x86 architecture. This enables the use of many of the tools commonly available for the parallel programming of x86-based architectures, which may lead to a smaller learning curve. However, programming the Xeon Phi still entails aspects intrinsic to accelerator-based computing, in general, and to the MIC architecture, in particular. In this thesis we advocate the use of algorithmic skeletons for programming the Xeon Phi. Algorithmic skeletons abstract the complexity inherent to parallel programming, hiding details such as resource management, parallel decomposition, inter-execution flow communication, thus removing these concerns from the programmer’s mind. In this context, the goal of the thesis is to lay the foundations for the development of a simple but powerful and efficient skeleton framework for the programming of the Xeon Phi processor. For this purpose we build upon Marrow, an existing framework for the orchestration of OpenCLTM computations in multi-GPU and CPU environments. We extend Marrow to execute both OpenCL and C++ parallel computations on the Xeon Phi. We evaluate the newly developed framework, several well-known benchmarks, like Saxpy and N-Body, will be used to compare, not only its performance to the existing framework when executing on the co-processor, but also to assess the performance on the Xeon Phi versus a multi-GPU environment.