952 resultados para discrete-event simulation
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this article, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noise under three kinds of performance criterions related to the final value of the expectation and variance of the output. In the first problem it is desired to minimise the final variance of the output subject to a restriction on its final expectation, in the second one it is desired to maximise the final expectation of the output subject to a restriction on its final variance, and in the third one it is considered a performance criterion composed by a linear combination of the final variance and expectation of the output of the system. We present explicit sufficient conditions for the existence of an optimal control strategy for these problems, generalising previous results in the literature. We conclude this article presenting a numerical example of an asset liabilities management model for pension funds with regime switching.
Resumo:
Due to the broadband characteristic of chaotic signals, many of the methods that have been proposed for synchronizing chaotic systems do not usually present a satisfactory performance when applied to bandlimited communication channels. Here, the effects of bandwidth limitations imposed by the channel on the synchronous solution of a discrete-time chaotic master-slave network are investigated. The discrete-time system considered in this study is the Henon map. It is analytically shown that synchronism can be achieved in such a network by introducing a digital filter in the feedback loop responsible for generating the chaotic signal that will be sent to the slave node. Numerical simulations relating the filter parameters, such as its order and cut-off frequency, to the maximum Lyapunov exponent of the master node, which determines if the transmitted signal is chaotic or not, are also presented. These results can be useful for practical communication schemes based on chaos.
Resumo:
In this paper we consider the existence of the maximal and mean square stabilizing solutions for a set of generalized coupled algebraic Riccati equations (GCARE for short) associated to the infinite-horizon stochastic optimal control problem of discrete-time Markov jump with multiplicative noise linear systems. The weighting matrices of the state and control for the quadratic part are allowed to be indefinite. We present a sufficient condition, based only on some positive semi-definite and kernel restrictions on some matrices, under which there exists the maximal solution and a necessary and sufficient condition under which there exists the mean square stabilizing solution fir the GCARE. We also present a solution for the discounted and long run average cost problems when the performance criterion is assumed be composed by a linear combination of an indefinite quadratic part and a linear part in the state and control variables. The paper is concluded with a numerical example for pension fund with regime switching.
Resumo:
In this paper we obtain the linear minimum mean square estimator (LMMSE) for discrete-time linear systems subject to state and measurement multiplicative noises and Markov jumps on the parameters. It is assumed that the Markov chain is not available. By using geometric arguments we obtain a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the error covariance matrix of the LMMSE to a stationary value under the assumption of mean square stability of the system and ergodicity of the associated Markov chain is obtained. It is shown that there exists a unique positive semi-definite solution for the stationary Riccati-like filter equation and, moreover, this solution is the limit of the error covariance matrix of the LMMSE. The advantage of this scheme is that it is very easy to implement and all calculations can be performed offline. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Asymmetric discrete triangular distributions are introduced in order to extend the symmetric ones serving for discrete associated kernels in the nonparametric estimation for discrete functions. The extension from one to two orders around the mode provides a large family of discrete distributions having a finite support. Establishing a bridge between Dirac and discrete uniform distributions, some different shapes are also obtained and their properties are investigated. In particular, the mean and variance are pointed out. Applications to discrete kernel estimators are given with a solution to a boundary bias problem. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Interval-censored survival data, in which the event of interest is not observed exactly but is only known to occur within some time interval, occur very frequently. In some situations, event times might be censored into different, possibly overlapping intervals of variable widths; however, in other situations, information is available for all units at the same observed visit time. In the latter cases, interval-censored data are termed grouped survival data. Here we present alternative approaches for analyzing interval-censored data. We illustrate these techniques using a survival data set involving mango tree lifetimes. This study is an example of grouped survival data.
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Simulation of irrigated Thanzania grass growth based on photothermal units, nitrogen fertilization and water availability. The mathematical model to predict the forage yield using photothennal units was utilized with success in Elephant grass, Thanzania and Brachiaria niziziensis in the absence of water stress and nitrogen stress. The aim of this study was to propose models to estimate the forage yield of Thanzania grass under different irrigation (25, 50,75, 100 e 125% of ETc) and nitrogen level in various regions of Brazil. As such, models were developed to estimate the dry matter production of Panicum maximum Jacq. frass cv Thanzania in different irrigation and nitrogen levels, using photothermal units. The models were adjusted to doses of 0, 30, 60, 110 and 270 kg of N ha(-1), doses were divided in applications after each evaluation, with a rest cycle of 35 days. The adjusted model presented good performance in predicting dry matter production of Thanzania grass, with r(2) = 0.9999. The results made it possible to verify that the proposed model can be used to predict forage production in different regions of Brazil. It can be estimated, with good precision. The production of Thanzania grass dry matter can be accurately estimated in specific places (in function of latitude and time of year), with the maximum and minimum temperature values.
Resumo:
In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Discrete element method (DEM) modeling is used in parallel with a model for coalescence of deformable surface wet granules. This produces a method capable of predicting both collision rates and coalescence efficiencies for use in derivation of an overall coalescence kernel. These coalescence kernels can then be used in computationally efficient meso-scale models such as population balance equation (PBE) models. A soft-sphere DEM model using periodic boundary conditions and a unique boxing scheme was utilized to simulate particle flow inside a high-shear mixer. Analysis of the simulation results provided collision frequency, aggregation frequency, kinetic energy, coalescence efficiency and compaction rates for the granulation process. This information can be used to bridge the gap in multi-scale modeling of granulation processes between the micro-scale DEM/coalescence modeling approach and a meso-scale PBE modeling approach.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
Silicic volcanic eruptions are typically accompanied by repetitive Long-Period (LP) seismicity that originates from a small region of the upper conduit. These signals have the capability to advance eruption prediction, since they commonly precede a change in the eruption vigour. Shear bands forming along the conduit wall, where the shear stresses are highest, have been linked to providing the seismic trigger. However, existing computational models are unable to generate shear bands at the depths where the LP signals originate using simple magma strength models. Presented here is a model in which the magma strength is determined from a constitutive relationship dependent upon crystallinity and pressure. This results in a depth-dependent magma strength, analogous to planetary lithospheres. Hence, in shallow highly-crystalline regions a macroscopically discontinuous brittle type of deformation will prevail, whilst in deeper crystal-poor regions there will be a macroscopically continuous plastic deformation mechanism. This will result in a depth where the brittle-ductile transition occurs, and here shear bands disconnected from the free-surface may develop. We utilize the Finite Element Method and use axi-symmetric coordinates to model magma flow as a viscoplastic material, simulating quasi-static shear bands along the walls of a volcanic conduit. Model results constrained to the Soufrière Hills Volcano, Montserrat, show the generation of two types of shear bands: upper-conduit shear bands that form between the free-surface to a few 100 metres below it and discrete shear bands that form at the depths where LP seismicity is measured to occur corresponding to the brittle-ductile transition and the plastic shear region. It is beyond the limitation of the model to simulate a seismic event, although the modelled viscosity within the discrete shear bands suggests a failure and healing cycle time that supports the observed LP seismicity repeat times. However, due to the paucity of data and large parameter space available these results can only be considered to be qualitative rather than quantitative at this stage.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design problems. This also makes the code much more ‘user-friendly’ than structured grid approaches as the gridding process is done automatically. The CFD methodology relies on a finite-volume formulation of the unsteady Euler equations and is solved using a standard explicit Godonov (MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel processing capability have also been incorporated. For further details on the theory behind the code, see the companion report 2007/12.