704 resultados para discrete mathematics
Resumo:
This study presents the findings of applying a Discrete Demand Side Control (DDSC) approach to the space heating of two case study buildings. High and low tolerance scenarios are implemented on the space heating controller to assess the impact of DDSC upon buildings with different thermal capacitances, light-weight and heavy-weight construction. Space heating is provided by an electric heat pump powered from a wind turbine, with a back-up electrical network connection in the event of insufficient wind being available when a demand occurs. Findings highlight that thermal comfort is maintained within an acceptable range while the DDSC controller maintains the demand/supply balance. Whilst it is noted that energy demand increases slightly, as this is mostly supplied from the wind turbine, this is of little significance and hence a reduction in operating costs and carbon emissions is still attained.
Resumo:
The First International Workshop on The Role and Impact of Mathematics in Medicine (RIMM) convened in Paris in June 2010. A broad range of researchers discussed the difficulties, challenges and opportunities faced by those wishing to see mathematical methods contribute to improved medical outcomes. Finding mechanisms for inter- disciplinary meetings, developing a common language, staying focused on the medical problem at hand, deriving realistic mathematical solutions, obtaining
Resumo:
One of the key tenets in Wittgenstein’s philosophy of mathematics is that a mathematical proposition gets its meaning from its proof. This seems to have the paradoxical consequence that a mathematical conjecture has no meaning, or at least not the same meaning that it will have once a proof has been found. Hence, it would appear that a conjecture can never be proven true: for what is proven true must ipso facto be a different proposition from what was only conjectured. Moreover, it would appear impossible that the same mathematical proposition be proven in different ways. — I will consider some of Wittgenstein’s remarks on these issues, and attempt to reconstruct his position in a way that makes it appear less paradoxical.
Resumo:
In this article Geoff Tennant and Dave Harries report on the early stages of a research project looking to examine the transition from Key Stage (KS) 2 to 3 of children deemed Gifted and Talented (G&T) in mathematics. An examination of relevant literature points towards variation in definition of key terms and underlying rationale for activities. Preliminary fieldwork points towards a lack of meaningful communication between schools, with primary school teachers in particular left to themselves to decide how to work with children deemed G&T. Some pointers for action are given, along with ideas for future research and a request for colleagues interested in working with us to get in touch.
Resumo:
We propose and analyse a class of evolving network models suitable for describing a dynamic topological structure. Applications include telecommunication, on-line social behaviour and information processing in neuroscience. We model the evolving network as a discrete time Markov chain, and study a very general framework where, conditioned on the current state, edges appear or disappear independently at the next timestep. We show how to exploit symmetries in the microscopic, localized rules in order to obtain conjugate classes of random graphs that simplify analysis and calibration of a model. Further, we develop a mean field theory for describing network evolution. For a simple but realistic scenario incorporating the triadic closure effect that has been empirically observed by social scientists (friends of friends tend to become friends), the mean field theory predicts bistable dynamics, and computational results confirm this prediction. We also discuss the calibration issue for a set of real cell phone data, and find support for a stratified model, where individuals are assigned to one of two distinct groups having different within-group and across-group dynamics.
Resumo:
This text contains papers presented at the Institute of Mathematics and its Applications Conference on Control Theory, held at the University of Strathclyde in Glasgow. The contributions cover a wide range of topics of current interest to theoreticians and practitioners including algebraic systems theory, nonlinear control systems, adaptive control, robustness issues, infinite dimensional systems, applications studies and connections to mathematical aspects of information theory and data-fusion.
Resumo:
Teaching mathematics to students in the biological sciences is often fraught with difficulty. Students often discover mathematics to be a very 'dry' subject in which it is difficult to see the motivation of learning it given its often abstract application. In this paper I advocate the use of mathematical modelling as a method for engaging students in understanding the use of mathematics in helping to solve problems in the Biological Sciences. The concept of mathematics as a laboratory tool is introduced and the importance of presenting students with relevant, real-world examples of applying mathematics in the Biological Sciences is discussed.
Resumo:
The societal need for reliable climate predictions and a proper assessment of their uncertainties is pressing. Uncertainties arise not only from initial conditions and forcing scenarios, but also from model formulation. Here, we identify and document three broad classes of problems, each representing what we regard to be an outstanding challenge in the area of mathematics applied to the climate system. First, there is the problem of the development and evaluation of simple physically based models of the global climate. Second, there is the problem of the development and evaluation of the components of complex models such as general circulation models. Third, there is the problem of the development and evaluation of appropriate statistical frameworks. We discuss these problems in turn, emphasizing the recent progress made by the papers presented in this Theme Issue. Many pressing challenges in climate science require closer collaboration between climate scientists, mathematicians and statisticians. We hope the papers contained in this Theme Issue will act as inspiration for such collaborations and for setting future research directions.
Resumo:
We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.
Resumo:
Many applications, such as intermittent data assimilation, lead to a recursive application of Bayesian inference within a Monte Carlo context. Popular data assimilation algorithms include sequential Monte Carlo methods and ensemble Kalman filters (EnKFs). These methods differ in the way Bayesian inference is implemented. Sequential Monte Carlo methods rely on importance sampling combined with a resampling step, while EnKFs utilize a linear transformation of Monte Carlo samples based on the classic Kalman filter. While EnKFs have proven to be quite robust even for small ensemble sizes, they are not consistent since their derivation relies on a linear regression ansatz. In this paper, we propose another transform method, which does not rely on any a priori assumptions on the underlying prior and posterior distributions. The new method is based on solving an optimal transportation problem for discrete random variables. © 2013, Society for Industrial and Applied Mathematics
Resumo:
This research examined how motivation (perceived control, intrinsic motivation, and extrinsic motivation), cognitive learning strategies (deep and surface strategies), and intelligence jointly predict long-term growth in students' mathematics achievement over 5 years. Using longitudinal data from six annual waves (Grades 5 through 10; Mage = 11.7 years at baseline; N = 3,530), latent growth curve modeling was employed to analyze growth in achievement. Results showed that the initial level of achievement was strongly related to intelligence, with motivation and cognitive strategies explaining additional variance. In contrast, intelligence had no relation with the growth of achievement over years, whereas motivation and learning strategies were predictors of growth. These findings highlight the importance of motivation and learning strategies in facilitating adolescents' development of mathematical competencies.