690 resultados para dimers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The BCR-ABL fusion gene is the molecular hallmark of Philadelphia-positive leukemias. Normal Bcr is a multifunctional protein, originally localized to the cytoplasm. It has serine kinase activity and has been implicated in cellular signal transduction. Recently, it has been reported that Bcr can interact with xeroderma pigmentosum group B (XPB/ERCC3)—a nuclear protein active in UV-induced DNA repair. Two major Bcr proteins (p160 Bcr and p130Bcr) have been characterized, and our preliminary results using metabolic labeling and immunoblotting demonstrated that, while both the p160 and p130 forms of Bcr localized to the cytoplasm, the p130 form (and to a lesser extent p160) could also be found in the nucleus. Furthermore, electron microscopy confirmed the presence of Bcr in the nucleus and demonstrated that this protein associates with metaphase chromatin as well as condensed interphase heterochromatin. Since serine kinases that associate with condensed DNA are often cell cycle regulatory, these observations suggested a novel role for nuclear Bcr in cell cycle regulation and/or DNA repair. However, cell cycle synchronization analysis did not demonstrate changes in levels of Bcr throughout the cell cycle. Therefore we hypothesized that BCR serves as a DNA repair gene, and its function is altered by formation of BCR-ABL. This hypothesis was investigated using cell lines stably transfected with the BCR-ABL gene, and their parental counterparts (MBA-1 vs. M07E and Bcr-AblT1 vs. 4A2+pZAP), and several DNA repair assays: the Comet assay, a radioinimunoassay for UV-induced cyclobutane pyrimidine dimers (CPDs), and clonogenic assays. Comet assays demonstrated that, after exposure to either ultraviolet (UV)-C (0.5 to 10.0 joules m −2) or to gamma radiation (200–1000 rads) there was greater efficiency of DNA repair in the BCR-ABL-transfected cells compared to their parental controls. Furthermore, after UVC-irradiation, there was less production of CPDs, and a more rapid disappearance of these adducts in BCR-ABL-bearing cells. UV survival, as reflected by clonogenic assays, was also greater in the BCR-ABL-transfected cells. Taken together, these results indicate that, in our systems, BCR-ABL confers resistance to UVC-induced damage in cells, and increases DNA repair efficiency in response to both UVC- and gamma-irradiation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IL-24 is an unusual member of the IL-10 family, which is considered a Th1 cytokine that exhibits tumor cell cytotoxicity. I describe the purification of this novel cytokine from the supernatant of IL-24 gene transfected human embryonic kidney cells and define the biochemical and functional properties of the soluble, human IL-24 protein. ^ I showed IL-24 non-covalently associates with bovine albumin. Immunoaffinity purification followed by cation exchange chromatography resulted in the significant enrichment of N-glycosylated IL-24. This protein elicited dose-dependent secretion of TNF-α and IL-6 from purified human monocytes and TNF-α secretion from PMA differentiated U937 cells. I showed this same protein was cytotoxic to melanoma tumor cells via the induction of IFN-α. ^ I reported IL-24 associates as at least two disulfide linked, N-glycosylated dimers. Enzymatic removal of N-linked-glycosylation from purified IL-24 partially diminished its cytokine and cytotoxic functions. Disruption of IL-24 dimers via reduction and alkylation of intermolecular disulfide bonds nearly abolished IL-24s cytokine function. ^ I elucidated IL-24 induced TNF-α secretion was pSTAT1, pSTAT3 as well as the class II heterodimeric receptors IL-20R1/IL-22R2 independent. I identified a requirement for the heterodimer of Toll-like Receptors 1 and 2 for IL-24s cytokine function and show a physical interaction between IL-24 and the extracellular domain of TLR-1. ^ Thus, I demonstrated that purified N-glycosylated, soluble, dimeric, human IL-24 exhibits both immunomodulatory and anti-cancer activities and these functions remain associated during purification. IL-24 induced TNF-α secretion required an interaction with the heterodimeric receptor TLR-1/2 and IL-24s cytotoxic affect to melanoma tumor cells was in part due to its induction of IFN-β. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the atomic surface properties of differently prepared silicon and germanium (100) surfaces during metal-organic vapour phase epitaxy/chemical vapour deposition (MOVPE/MOCVD), in particular the impact of the MOVPE ambient, and applied reflectance anisotropy/difference spectroscopy (RAS/RDS) in our MOVPE reactor to in-situ watch and control the preparation on the atomic length scale for subsequent III-V-nucleation. The technological interest in the predominant opto-electronic properties of III-V-compounds drives the research for their heteroepitaxial integration on more abundant and cheaper standard substrates such as Si(100) or Ge(100). In these cases, a general task must be accomplished successfully, i.e. the growth of polar materials on non-polar substrates and, beyond that, very specific variations such as the individual interface formation and the atomic step structure, have to be controlled. Above all, the method of choice to grow industrial relevant high-performance device structures is MOVPE, not normally compatible with surface and interface sensitive characterization tools, which are commonly based on ultrahigh vacuum (UHV) ambients. A dedicated sample transfer system from MOVPE environment to UHV enabled us to benchmark the optical in-situ spectra with results from various surfaces science instruments without considering disruptive contaminants. X-ray photoelectron spectroscopy (XPS) provided direct observation of different terminations such as arsenic and phosphorous and verified oxide removal under various specific process parameters. Absorption lines in Fourier-transform infrared (FTIR) spectra were used to identify specific stretch modes of coupled hydrides and the polarization dependence of the anti-symmetric stretch modes distinguished different dimer orientations. Scanning tunnelling microscopy (STM) studied the atomic arrangement of dimers and steps and tip-induced H-desorption proved the saturation of dangling bonds after preparati- n. In-situ RAS was employed to display details transiently such as the presence of H on the surface at lower temperatures (T <; 800°C) and the absence of Si-H bonds at elevated annealing temperature and also surface terminations. Ge buffer growth by the use of GeH4 enables the preparation of smooth surfaces and leads to a more pronounced amplitude of the features in the spectra which indicates improvements of the surface quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the preparation of single domain Ge(100):As surfaces in a metal-organic vapor phase epitaxy reactor. In situ reflection anisotropy spectra (RAS) of vicinal substrates change when arsenic is supplied either by tertiarybutylarsine or by background As4 during annealing. Low energy electron diffraction shows mutually perpendicular orientations of dimers, scanning tunneling microscopy reveals distinct differences in the step structure, and x-ray photoelectron spectroscopy confirms differences in the As coverage of the Ge(100): As samples. Their RAS signals consist of contributions related to As dimer orientation and to step structure, enabling precise in situ control over preparation of single domain Ge(100): As surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Situado en el límite entre Ingeniería, Informática y Biología, la mecánica computacional de las neuronas aparece como un nuevo campo interdisciplinar que potencialmente puede ser capaz de abordar problemas clínicos desde una perspectiva diferente. Este campo es multiescala por naturaleza, yendo desde la nanoescala (como, por ejemplo, los dímeros de tubulina) a la macroescala (como, por ejemplo, el tejido cerebral), y tiene como objetivo abordar problemas que son complejos, y algunas veces imposibles, de estudiar con medios experimentales. La modelización computacional ha sido ampliamente empleada en aplicaciones Neurocientíficas tan diversas como el crecimiento neuronal o la propagación de los potenciales de acción compuestos. Sin embargo, en la mayoría de los enfoques de modelización hechos hasta ahora, la interacción entre la célula y el medio/estímulo que la rodea ha sido muy poco explorada. A pesar de la tremenda importancia de esa relación en algunos desafíos médicos—como, por ejemplo, lesiones traumáticas en el cerebro, cáncer, la enfermedad del Alzheimer—un puente que relacione las propiedades electrofisiológicas-químicas y mecánicas desde la escala molecular al nivel celular todavía no existe. Con ese objetivo, esta investigación propone un marco computacional multiescala particularizado para dos escenarios respresentativos: el crecimiento del axón y el acomplamiento electrofisiológicomecánico de las neuritas. En el primer caso, se explora la relación entre los constituyentes moleculares del axón durante su crecimiento y sus propiedades mecánicas resultantes, mientras que en el último, un estímulo mecánico provoca deficiencias funcionales a nivel celular como consecuencia de sus alteraciones electrofisiológicas-químicas. La modelización computacional empleada en este trabajo es el método de las diferencias finitas, y es implementada en un nuevo programa llamado Neurite. Aunque el método de los elementos finitos es también explorado en parte de esta investigación, el método de las diferencias finitas tiene la flexibilidad y versatilidad necesaria para implementar mode los biológicos, así como la simplicidad matemática para extenderlos a simulaciones a gran escala con un coste computacional bajo. Centrándose primero en el efecto de las propiedades electrofisiológicas-químicas sobre las propiedades mecánicas, una versión adaptada de Neurite es desarrollada para simular la polimerización de los microtúbulos en el crecimiento del axón y proporcionar las propiedades mecánicas como función de la ocupación de los microtúbulos. Después de calibrar el modelo de crecimiento del axón frente a resultados experimentales disponibles en la literatura, las características mecánicas pueden ser evaluadas durante la simulación. Las propiedades mecánicas del axón muestran variaciones dramáticas en la punta de éste, donde el cono de crecimiento soporta las señales químicas y mecánicas. Bansándose en el conocimiento ganado con el modelo de diferencias finitas, y con el objetivo de ir de 1D a 3D, este esquema preliminar pero de una naturaleza innovadora allana el camino a futuros estudios con el método de los elementos finitos. Centrándose finalmente en el efecto de las propiedades mecánicas sobre las propiedades electrofisiológicas- químicas, Neurite es empleado para relacionar las cargas mecánicas macroscópicas con las deformaciones y velocidades de deformación a escala microscópica, y simular la propagación de la señal eléctrica en las neuritas bajo carga mecánica. Las simulaciones fueron calibradas con resultados experimentales publicados en la literatura, proporcionando, por tanto, un modelo capaz de predecir las alteraciones de las funciones electrofisiológicas neuronales bajo cargas externas dañinas, y uniendo lesiones mecánicas con las correspondientes deficiencias funcionales. Para abordar simulaciones a gran escala, aunque otras arquitecturas avanzadas basadas en muchos núcleos integrados (MICs) fueron consideradas, los solvers explícito e implícito se implementaron en unidades de procesamiento central (CPU) y unidades de procesamiento gráfico (GPUs). Estudios de escalabilidad fueron llevados acabo para ambas implementaciones mostrando resultados prometedores para casos de simulaciones extremadamente grandes con GPUs. Esta tesis abre la vía para futuros modelos mecánicos con el objetivo de unir las propiedades electrofisiológicas-químicas con las propiedades mecánicas. El objetivo general es mejorar el conocimiento de las comunidades médicas y de bioingeniería sobre la mecánica de las neuronas y las deficiencias funcionales que aparecen de los daños producidos por traumatismos mecánicos, como lesiones traumáticas en el cerebro, o enfermedades neurodegenerativas como la enfermedad del Alzheimer. ABSTRACT Sitting at the interface between Engineering, Computer Science and Biology, Computational Neuron Mechanics appears as a new interdisciplinary field potentially able to tackle clinical problems from a new perspective. This field is multiscale by nature, ranging from the nanoscale (e.g., tubulin dimers) to the macroscale (e.g., brain tissue), and aims at tackling problems that are complex, and sometime impossible, to study through experimental means. Computational modeling has been widely used in different Neuroscience applications as diverse as neuronal growth or compound action potential propagation. However, in the majority of the modeling approaches done in this field to date, the interactions between the cell and its surrounding media/stimulus have been rarely explored. Despite of the tremendous importance of such relationship in several medical challenges—e.g., traumatic brain injury (TBI), cancer, Alzheimer’s disease (AD)—a bridge between electrophysiological-chemical and mechanical properties of neurons from the molecular scale to the cell level is still lacking. To this end, this research proposes a multiscale computational framework particularized for two representative scenarios: axon growth and electrophysiological-mechanical coupling of neurites. In the former case, the relation between the molecular constituents of the axon during its growth and its resulting mechanical properties is explored, whereas in the latter, a mechanical stimulus provokes functional deficits at cell level as a consequence of its electrophysiological-chemical alterations. The computational modeling approach chosen in this work is the finite difference method (FDM), and was implemented in a new program called Neurite. Although the finite element method (FEM) is also explored as part of this research, the FDM provides the necessary flexibility and versatility to implement biological models, as well as the mathematical simplicity to extend them to large scale simulations with a low computational cost. Focusing first on the effect of electrophysiological-chemical properties on the mechanical proper ties, an adaptation of Neurite was developed to simulate microtubule polymerization in axonal growth and provide the axon mechanical properties as a function of microtubule occupancy. After calibrating the axon growth model against experimental results available in the literature, the mechanical characteristics can be tracked during the simulation. The axon mechanical properties show dramatic variations at the tip of the axon, where the growth cone supports the chemical and mechanical signaling. Based on the knowledge gained from the FDM scheme, and in order to go from 1D to 3D, this preliminary yet novel scheme paves the road for future studies with FEM. Focusing then on the effect of mechanical properties on the electrophysiological-chemical properties, Neurite was used to relate macroscopic mechanical loading to microscopic strains and strain rates, and simulate the electrical signal propagation along neurites under mechanical loading. The simulations were calibrated against experimental results published in the literature, thus providing a model able to predict the alteration of neuronal electrophysiological function under external damaging load, and linking mechanical injuries to subsequent acute functional deficits. To undertake large scale simulations, although other state-of-the-art architectures based on many integrated cores (MICs) were considered, the explicit and implicit solvers were implemented for central processing units (CPUs) and graphics processing units (GPUs). Scalability studies were done for both implementations showing promising results for extremely large scale simulations with GPUs. This thesis opens the avenue for future mechanical modeling approaches aimed at linking electrophysiological- chemical properties to mechanical properties. Its overarching goal is to enhance the bioengineering and medical communities knowledge on neuronal mechanics and functional deficits arising from damages produced by direct mechanical insults, such as TBI, or neurodegenerative evolving illness, such as AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During protein synthesis, the two elongation factors Tu and G alternately bind to the 50S ribosomal subunit at a site of which the protein L7/L12 is an essential component. L7/L12 is present in each 50S subunit in four copies organized as two dimers. Each dimer consists of distinct domains: a single N-terminal (“tail”) domain that is responsible for both dimerization and binding to the ribosome via interaction with the protein L10 and two independent globular C-terminal domains (“heads”) that are required for binding of elongation factors to ribosomes. The two heads are connected by flexible hinge sequences to the N-terminal domain. Important questions concerning the mechanism by which L7/L12 interacts with elongation factors are posed by us in response to the presence of two dimers, two heads per dimer, and their dynamic, mobile properties. In an attempt to answer these questions, we constructed a single-headed dimer of L7/L12 by using recombinant DNA techniques and chemical cross-linking. This chimeric molecule was added to inactive core particles lacking wild-type L7/L12 and shown to restore activity to a level approaching that of wild-type two-headed L7/L12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inducible nitric oxide synthase (iNOS) contains an amino-terminal oxygenase domain, a carboxy-terminal reductase domain, and an intervening calmodulin-binding region. For the synthesis of nitric oxide (NO), iNOS is active as a homodimer. The human iNOS mRNA is subject to alternative splicing, including deletion of exons 8 and 9 that encode amino acids 242–335 of the oxygenase domain. In this study, iNOS8−9− and full-length iNOS (iNOSFL) were cloned from bronchial epithelial cells. Expression of iNOS8−9− in 293 cell line resulted in generation of iNOS8−9− mRNA and protein but did not lead to NO production. In contrast to iNOSFL, iNOS8−9− did not form dimers. Similar to iNOSFL, iNOS8−9− exhibited NADPH-diaphorase activity and contained tightly bound calmodulin, indicating that the reductase and calmodulin-binding domains were functional. To identify sequences in exons 8 and 9 that are critical for dimerization, iNOSFL was used to construct 12 mutants, each with deletion of eight residues in the region encoded by exons 8 and 9. In addition, two “control” iNOS deletion mutants were synthesized, lacking either residues 45–52 of the oxygenase domain or residues 1131–1138 of the reductase domain. Whereas both control deletion mutants generated NO and formed dimers, none of the 12 other mutants formed dimers or generated NO. The region encoded by exons 8 and 9 is critical for iNOS dimer formation and NO production but not for reductase activity. This region could be a potential target for therapeutic interventions aimed at inhibiting iNOS dimerization and hence NO synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transporter associated with antigen processing (TAP) is essential for the transport of antigenic peptides across the membrane of the endoplasmic reticulum. In addition, TAP interacts with major histocompatibility complex class I heavy chain (HC)/β2-microglobulin (β2-m) dimers. We have cloned a cDNA encoding a TAP1/2-associated protein (TAP-A) corresponding in size and biochemical properties to tapasin, which was recently suggested to be involved in class I–TAP interaction (Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. & Cresswell, P. (1996) Immunity 5, 103–114). The cDNA encodes a 448-residue-long ORF, including a signal peptide. The protein is predicted to be a type I membrane glycoprotein with a cytoplasmic tail containing a double-lysine motif (-KKKAE-COOH) known to maintain membrane proteins in the endoplasmic reticulum. Immunoprecipitation with anti-TAP1 or anti-TAP-A antisera demonstrated a consistent and stoichiometric association of TAP-A with TAP1/2. Class I HC and β2-m also were coprecipitated with these antisera, indicating the presence of a pentameric complex. In pulse–chase experiments, class I HC/β2-m rapidly dissociated from TAP1/2-TAP-A. We propose that TAP is a trimeric complex consisting of TAP1, TAP2, and TAP-A that interacts transiently with class I HC/β2-m. In peptide-binding assays using cross-linkable peptides and intact microsomes, TAP-A bound peptides only in the presence of ATP whereas binding of peptides to TAP1/2 was ATP-independent. This suggests a direct role of TAP-A in peptide loading onto class I HC/β2-m dimer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capsid protein of hepatitis B virus, consisting of an “assembly” domain (residues 1–149) and an RNA-binding “protamine” domain (residues 150–183), assembles from dimers into icosahedral capsids of two different sizes. The C terminus of the assembly domain (residues 140–149) functions as a morphogenetic switch, longer C termini favoring a higher proportion of the larger capsids, it also connects the protamine domain to the capsid shell. We now have defined the location of this peptide in capsids assembled in vitro by engineering a mutant assembly domain with a single cysteine at its C terminus (residue 150), labeling it with a gold cluster and visualizing the cluster by cryo-electron microscopy. The labeled protein is unimpaired in its ability to form capsids. Our density map reveals a single undecagold cluster under each fivefold and quasi-sixfold vertex, connected to sites at either end of the undersides of the dimers. Considering the geometry of the vertices, the C termini must be more crowded at the fivefolds. Thus, a bulky C terminus would be expected to favor formation of the larger (T = 4) capsids, which have a greater proportion of quasi-sixfolds. Capsids assembled by expressing the full-length protein in Escherichia coli package bacterial RNAs in amounts equivalent to the viral pregenome. Our density map of these capsids reveals a distinct inner shell of density—the RNA. The RNA is connected to the protein shell via the C-terminal linkers and also makes contact around the dimer axes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20–30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the crystal structures of the copper and nickel complexes of RNase A. The overall topology of these two complexes is similar to that of other RNase A structures. However, there are significant differences in the mode of binding of copper and nickel. There are two copper ions per molecule of the protein, but there is only one nickel ion per molecule of the protein. Significant changes occur in the interprotein interactions as a result of differences in the coordinating groups at the common binding site around His-105. Consequently, the copper- and nickel-ion-bound dimers of RNase A act as nucleation sites for generating different crystal lattices for the two complexes. A second copper ion is present at an active site residue His-119 for which all the ligands are from one molecule of the protein. At this second site, His-119 adopts an inactive conformation (B) induced by the copper. We have identified a novel copper binding motif involving the α-amino group and the N-terminal residues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptors coupled to heterotrimeric G proteins can effectively stimulate growth promoting pathways in a large variety of cell types, and if persistently activated, these receptors can also behave as dominant-acting oncoproteins. Consistently, activating mutations for G proteins of the Gαs and Gαi2 families were found in human tumors; and members of the Gαq and Gα12 families are fully transforming when expressed in murine fibroblasts. In an effort aimed to elucidate the molecular events involved in proliferative signaling through heterotrimeric G proteins we have focused recently on gene expression regulation. Using NIH 3T3 fibroblasts expressing m1 muscarinic acetylcholine receptors as a model system, we have observed that activation of this transforming G protein-coupled receptors induces the rapid expression of a variety of early responsive genes, including the c-fos protooncogene. One of the c-fos promoter elements, the serum response element (SRE), plays a central regulatory role, and activation of SRE-dependent transcription has been found to be regulated by several proteins, including the serum response factor and the ternary complex factor. With the aid of reporter plasmids for gene expression, we observed here that stimulation of m1 muscarinic acetylcholine receptors potently induced SRE-driven reporter gene activity in NIH 3T3 cells. In these cells, only the Gα12 family of heterotrimeric G protein α subunits strongly induced the SRE, while Gβ1γ2 dimers activated SRE to a more limited extent. Furthermore, our study provides strong evidence that m1, Gα12 and the small GTP-binding protein RhoA are components of a novel signal transduction pathway that leads to the ternary complex factor-independent transcriptional activation of the SRE and to cellular transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mammalian recombinant strategy was established to dissect rules of basement membrane laminin assembly and secretion. The α-, β-, and γ-chain subunits of laminin-1 were expressed in all combinations, transiently and/or stably, in a near-null background. In the absence of its normal partners, the α chain was secreted as intact protein and protein that had been cleaved in the coiled-coil domain. In contrast, the β and γ chains, expressed separately or together, remained intracellular with formation of ββ or βγ, but not γγ, disulfide-linked dimers. Secretion of the β and γ chains required simultaneous expression of all three chains and their assembly into αβγ heterotrimers. Epitope-tagged recombinant α subunit and recombinant laminin were affinity-purified from the conditioned medium of αγ and αβγ clones. Rotary-shadow electron microscopy revealed that the free α subunit is a linear structure containing N-terminal and included globules with a foreshortened long arm, while the trimeric species has the typical four-arm morphology of native laminin. We conclude that the α chain can be delivered to the extracellular environment as a single subunit, whereas the β and γ chains cannot, and that the α chain drives the secretion of the trimeric molecule. Such an α-chain-dependent mechanism could allow for the regulation of laminin export into a nascent basement membrane, and might serve an important role in controlling basement membrane formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of low molecular weight organic compounds to induce dimerization or oligomerization of engineered proteins has wide-ranging utility in biological research as well as in gene and cell therapies. Chemically induced dimerization can be used to activate intracellular signal transduction pathways or to control the activity of a bipartite transcription factor. Dimerizer systems based on the natural products cyclosporin, FK506, rapamycin, and coumermycin have been described. However, owing to the complexity of these compounds, adjusting their binding or pharmacological properties by chemical modification is difficult. We have investigated several families of readily prepared, totally synthetic, cell-permeable dimerizers composed of ligands for human FKBP12. These molecules have significantly reduced complexity and greater adaptability than natural product dimers. We report here the efficacies of several of these new synthetic compounds in regulating two types of protein dimerization events inside engineered cells—–induction of apoptosis through dimerization of engineered Fas proteins and regulation of transcription through dimerization of transcription factor fusion proteins. One dimerizer in particular, AP1510, proved to be exceptionally potent and versatile in all experimental contexts tested.