998 resultados para control of breathing, nucleus isthmi
Resumo:
A brief account is given of a pilot demonstration of the chemical control of water hyacinth (Eichhornia crassipes) at Ere (a channel) in Nigeria using the herbicide glyphosphate. Results suggest that there was an increase in the nutrient content of the channel after herbicide application. This implied an upsurge of available food for fish and other aquatic organisms within the channel after the herbicide application. The decaying water hyacinth mass which sinks into the medium is likely to boost nutrient content, promoting the growth of fish and other aquatic animals. It is concluded that herbicidal control of water hyacinth is possible, especially under specialists' management with the conservation of fish and other non-target aquatic organisms alongside improved fish production
Resumo:
Water hyacinth (Eichhornia crassipes) has been subject of three control methods since its arrival into the Nigerian freshwater lagoon system in 1984 - mechanical, chemical and biological. An assessment of these three methods seems to suggest that mechanical and chemical control methods, both of which being costly, must be applied either solely or integrated to combat the present level of considerable infestation in Nigeria. The biological control methods are advisable for slow, sustained control and can only cope with low levels of infestation. It is thus concluded that the preliminary control method should be mechanical or chemical to effectively abate the nuisance plant, followed by biological control once infestation levels have been sufficiently reduced
Resumo:
The paper describes the uniqueness and invasiveness of water hyacinth (Eichhornia crassipes) on Lake Kainji (Nigeria). The mechanical blocking device design concept based on the Kainji Lake flooding regime is also highlighted. Water hyacinth coverage, that was over 23% at high water in level in 1994, was reduced to 0.75% in the same period in 2000. Although this feat cannot be wholly ascribed to mechanical control effort alone, the first year of the device's full operation more than 1.04 million kg of fresh weight of water hyacinth were trapped, collected and deposited in two separate dumping pits, each at about 1 km off the shoreline of either side of the Lake. On further analysis over a period of one year of uncleared inflow of water hyacinth indicated the effectiveness of the bloom. Recommendations are advanced for the use of such local but highly technical knowledge to control floating water hyacinth that is vastly taking over the intricate network of Nigerian water systems and within the West African sub-region
Resumo:
Fish which has been cured or are in the process of being cured by traditional methods are usually infested by insects, posing a real problem to traders and processors, especially in Nigeria. The effects of 0.03% actellic 50 EC solution and vegetable oil on insect infestion were studied using West African sardines, Sardinella maderensis. Actellic solution was more effective in combating insect infestation than vegetable oil. Appearance and perceived smoked fish flavour of fish treated with Actellic and vegetable oil differed (P<0.05), while taste was unaffected by treatment. Actellic 50 EC solution though effective, could be subject to abuse
Resumo:
Rhythmic motor behaviors in all animals appear to be under the control of "central pattern generator" circuits, neural circuits which can produce output patterns appropriate for behavior even when isolated from their normal peripheral inputs. Insects have been a useful model system in which to study the control of legged terrestrial locomotion. Much is known about walking in insects at the behavioral level, but to date there has been no clear demonstration that a central pattern generator for walking exists. The focus of this thesis is to explore the central neural basis for locomotion in the locust, Schistocerca americana.
Rhythmic motor patterns could be evoked in leg motor neurons of isolated thoracic ganglia of locusts by the muscarinic agonist pilocarpine. These motor patterns would be appropriate for the movement of single legs during walking. Rhythmic patterns could be evoked in all three thoracic ganglia, but the segmental rhythms differed in their sensitivities to pilocarpine, their frequencies, and the phase relationships of motor neuron antagonists. These different patterns could be generated by a simple adaptable model circuit, which was both simulated and implemented in VLSI hardware. The intersegmental coordination of leg motor rhythms was then examined in preparations of isolated chains of thoracic ganglia. Correlations between motor patterns in different thoracic ganglia indicated that central coupling between segmental pattern generators is likely to contribute to the coordination of the legs during walking.
The work described here clearly demonstrates that segmental pattern generators for walking exist in insects. The pattern generators produce motor outputs which are likely to contribute to the coordination of the joints of a limb, as well as the coordination of different limbs. These studies lay the groundwork for further studies to determine the relative contributions of central and sensory neural mechanisms to terrestrial walking.
Resumo:
Diffusible proteins regulate neural development at a variety of stages. Using a novel neuronal culture assay, I have identified several cytokines that regulate the expression of neurotransmitters and neuropeptides in sympathetic neurons. These cytokines fall into two families. The first group is termed the neuropoietic cytokines, while including CDF/LIF, CNTF, OSM and GPA, induces expression of the same set of neuropeptide mRNAs in cultured sympathetic neurons. These four factors not only exhibit similar biological activities; they also share a predicted secondary structure and bind to a signal-transducing receptor subunit in common with IL-6 and IL-11. The latter two cytokines display a weaker activity in this assay. In addition, I find that several members of the TGF-β superfamily, activin A, BMP-2, and BMP-6, have a selective overlap with the neuropoietic family in the spectrum of neuropeptides that these cytokines induce in sympathetic neurons. Different patterns of neuropeptides induced by the TGF-β family members, however, demonstrate that the activities of these cytokines are distinct from those of the neuropoietic family. Another 30 cytokines are without detectable effect in this neuronal assay.
Activin A induces a set of neurotransmitters and neuropeptides that is somewhat similar to the phenotype of sympathetic neurons innervating sweat glands in rat footpads. In situ hybridization and RNase protection were carried out to test whether activins were involved in the phenotypic transition when sympathetic neurons contact sweat glands. I find that activin mRNA is present in both cholinergic and noradrenergic targets. Moreover, homogenates of footpads do not contain activin-like activity in the neuronal assay in vitro. Taken together, these data do not support activins as the best candidates for the sweat gland factor.
Several novel factors that regulate neuropeptide expression exist in heart cell conditioned medium. I attempted to purify these factors in collaboration with Dr. Jane Talvenheimo. Our results suggest that these factors are sensitive to the storage conditions used. Several modifications of purification strategy are discussed.