929 resultados para computational model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steel is, together with concrete, the most widely used material in civil engineering works. Not only its high strength, but also its ductility is of special interest, since it allows for more energy to be stored before failure. A better understanding of the material behaviour before failure may lead to better structural safety strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is devoted to the numerical analysis of bidimensional bonded lap joints. For this purpose, the stress singularities occurring at the intersections of the adherend-adhesive interfaces with the free edges are first investigated and a method for computing both the order and the intensity factor of these singularities is described briefly. After that, a simplified model, in which the adhesive domain is reduced to a line, is derived by using an asymptotic expansion method. Then, assuming that the assembly debonding is produced by a macro-crack propagation in the adhesive, the associated energy release rate is computed. Finally, a homogenization technique is used in order to take into account a preliminary adhesive damage consisting of periodic micro-cracks. Some numerical results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road accidents are a very relevant issue in many countries and macroeconomic models are very frequently applied by academia and administrations to reduce their frequency and consequences. The selection of explanatory variables and response transformation parameter within the Bayesian framework for the selection of the set of explanatory variables a TIM and 3IM (two input and three input models) procedures are proposed. The procedure also uses the DIC and pseudo -R2 goodness of fit criteria. The model to which the methodology is applied is a dynamic regression model with Box-Cox transformation (BCT) for the explanatory variables and autorgressive (AR) structure for the response. The initial set of 22 explanatory variables are identified. The effects of these factors on the fatal accident frequency in Spain, during 2000-2012, are estimated. The dependent variable is constructed considering the stochastic trend component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. Results: We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as “which particular data was input to a particular workflow to test a particular hypothesis?”, and “which particular conclusions were drawn from a particular workflow?”. Conclusions: Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the memristor was first built in 2008 at HP Labs, no end of devices and models have been presented. Also, new applications appear frequently. However, the integration of the device at the circuit level is not straightforward, because available models are still immature and/or suppose high computational loads, making their simulation long and cumbersome. This study assists circuit/systems designers in the integration of memristors in their applications, while aiding model developers in the validation of their proposals. We introduce the use of a memristor application framework to support the work of both the model developer and the circuit designer. First, the framework includes a library with the best-known memristor models, being easily extensible with upcoming models. Systematic modifications have been applied to these models to provide better convergence and significant simulations speedups. Second, a quick device simulator allows the study of the response of the models under different scenarios, helping the designer with the stimuli and operation time selection. Third, fine tuning of the device including parameters variations and threshold determination is also supported. Finally, SPICE/Spectre subcircuit generation is provided to ease the integration of the devices in application circuits. The framework provides the designer with total control overconvergence, computational load, and the evolution of system variables, overcoming usual problems in the integration of memristive devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A non-local gradient-based damage formulation within a geometrically non-linear set- ting is presented. The hyperelastic constitutive response at local material point level is governed by a strain energy function which is additively composed by an isotropic neo-Hookean matrix and by an anisotropic fibre-reinforced material based on the model proposed by T. Gasser, R. Ogden, and G. Holzapfel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initial step in most facial age estimation systems consists of accurately aligning a model to the output of a face detector (e.g. an Active Appearance Model). This fitting process is very expensive in terms of computational resources and prone to get stuck in local minima. This makes it impractical for analysing faces in resource limited computing devices. In this paper we build a face age regressor that is able to work directly on faces cropped using a state-of-the-art face detector. Our procedure uses K nearest neighbours (K-NN) regression with a metric based on a properly tuned Fisher Linear Discriminant Analysis (LDA) projection matrix. On FG-NET we achieve a state-of-the-art Mean Absolute Error (MAE) of 5.72 years with manually aligned faces. Using face images cropped by a face detector we get a MAE of 6.87 years in the same database. Moreover, most of the algorithms presented in the literature have been evaluated on single database experiments and therefore, they report optimistically biased results. In our cross-database experiments we get a MAE of roughly 12 years, which would be the expected performance in a real world application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Es bien conocido que las pequeñas imperfecciones existentes en los álabes de un rótor de turbomaquinaria (conocidas como “mistuning”) pueden causar un aumento considerable de la amplitud de vibración de la respuesta forzada y, por el contrario, tienen típicamente un efecto beneficioso en el flameo del rótor. Para entender estos efectos se pueden llevar a cabo estudios numéricos del problema aeroelástico completo. Sin embargo, el cálculo de “mistuning” usando modelos de alta resolución es una tarea difícil de realizar, ya que los modelos necesarios para describir de manera precisa el componente de turbomáquina (por ejemplo rotor) tienen, necesariamente, un número muy elevado de grados de libertad, y, además, es necesario hacer un estudio estadístico para poder explorar apropiadamente las distribuciones posibles de “mistuning”, que tienen una naturaleza aleatoria. Diferentes modelos de orden reducido han sido desarrollados en los últimos años para superar este inconveniente. Uno de estos modelos, llamado “Asymptotic Mistuning Model (AMM)”, se deriva de la formulación completa usando técnicas de perturbaciones que se basan en que el “mistuning” es pequeño. El AMM retiene sólo los modos relevantes para describir el efecto del mistuning, y permite identificar los mecanismos clave involucrados en la amplificación de la respuesta forzada y en la estabilización del flameo. En este trabajo, el AMM se usa para estudiar el efecto del “mistuning” de la estructura y de la amortiguación sobre la amplitud de la respuesta forzada. Los resultados obtenidos son validados usando modelos simplificados del rotor y también otros de alta definición. Además, en el marco del proyecto europeo FP7 "Flutter-Free Turbomachinery Blades (FUTURE)", el AMM se aplica para diseñar distribuciones de “mistuning” intencional: (i) una que anula y (ii) otra que reduce a la mitad la amplitud del flameo de un rotor inestable; y las distribuciones obtenidas se validan experimentalmente. Por último, la capacidad de AMM para predecir el comportamiento de flameo de rotores con “mistuning” se comprueba usando resultados de CFD detallados. Abstract It is well known that the small imperfections of the individual blades in a turbomachinery rotor (known as “mistuning”) can cause a substantial increase of the forced response vibration amplitude, and it also typically results in an improvement of the flutter vibration characteristics of the rotor. The understanding of these phenomena can be attempted just by performing numerical simulations of the complete aeroelastic problem. However, the computation of mistuning cases using high fidelity models is a formidable task, because a detailed model of the whole rotor has to be considered, and a statistical study has to be carried out in order to properly explore the effect of the random mistuning distributions. Many reduced order models have been developed in recent years to overcome this barrier. One of these models, called the Asymptotic Mistuning Model (AMM), is systematically derived from the complete bladed disk formulation using a consistent perturbative procedure that exploits the smallness of mistuning to simplify the problem. The AMM retains only the essential system modes that are involved in the mistuning effect, and it allows to identify the key mechanisms of the amplification of the forced response amplitude and the flutter stabilization. In this work, AMM methodolgy is used to study the effect of structural and damping mistuning on the forced response vibration amplitude. The obtained results are verified using a one degree of freedom model of a rotor, and also high fidelity models of the complete rotor. The AMM is also applied, in the frame of the European FP7 project “Flutter-Free Turbomachinery Blades (FUTURE)”, to design two intentional mistuning patterns: (i) one to complete stabilize an unstable rotor, and (ii) other to approximately reduce by half its flutter amplitude. The designed patterns are validated experimentally. Finally, the ability of AMM to predict the flutter behavior of mistuned rotors is checked against numerical, high fidelity CFD results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El cálculo de cargas de aerogeneradores flotantes requiere herramientas de simulación en el dominio del tiempo que consideren todos los fenómenos que afectan al sistema, como la aerodinámica, la dinámica estructural, la hidrodinámica, las estrategias de control y la dinámica de las líneas de fondeo. Todos estos efectos están acoplados entre sí y se influyen mutuamente. Las herramientas integradas se utilizan para calcular las cargas extremas y de fatiga que son empleadas para dimensionar estructuralmente los diferentes componentes del aerogenerador. Por esta razón, un cálculo preciso de las cargas influye de manera importante en la optimización de los componentes y en el coste final del aerogenerador flotante. En particular, el sistema de fondeo tiene gran impacto en la dinámica global del sistema. Muchos códigos integrados para la simulación de aerogeneradores flotantes utilizan modelos simplificados que no consideran los efectos dinámicos de las líneas de fondeo. Una simulación precisa de las líneas de fondeo dentro de los modelos integrados puede resultar fundamental para obtener resultados fiables de la dinámica del sistema y de los niveles de cargas en los diferentes componentes. Sin embargo, el impacto que incluir la dinámica de los fondeos tiene en la simulación integrada y en las cargas todavía no ha sido cuantificada rigurosamente. El objetivo principal de esta investigación es el desarrollo de un modelo dinámico para la simulación de líneas de fondeo con precisión, validarlo con medidas en un tanque de ensayos e integrarlo en un código de simulación para aerogeneradores flotantes. Finalmente, esta herramienta, experimentalmente validada, es utilizada para cuantificar el impacto que un modelos dinámicos de líneas de fondeo tienen en la computación de las cargas de fatiga y extremas de aerogeneradores flotantes en comparación con un modelo cuasi-estático. Esta es una información muy útil para los futuros diseñadores a la hora de decidir qué modelo de líneas de fondeo es el adecuado, dependiendo del tipo de plataforma y de los resultados esperados. El código dinámico de líneas de fondeo desarrollado en esta investigación se basa en el método de los Elementos Finitos, utilizando en concreto un modelo ”Lumped Mass” para aumentar su eficiencia de computación. Los experimentos realizados para la validación del código se realizaron en el tanque del École Céntrale de Nantes (ECN), en Francia, y consistieron en sumergir una cadena con uno de sus extremos anclados en el fondo del tanque y excitar el extremo suspendido con movimientos armónicos de diferentes periodos. El código demostró su capacidad para predecir la tensión y los movimientos en diferentes posiciones a lo largo de la longitud de la línea con gran precisión. Los resultados indicaron la importancia de capturar la dinámica de las líneas de fondeo para la predicción de la tensión especialmente en movimientos de alta frecuencia. Finalmente, el código se utilizó en una exhaustiva evaluación del efecto que la dinámica de las líneas de fondeo tiene sobre las cargas extremas y de fatiga de diferentes conceptos de aerogeneradores flotantes. Las cargas se calcularon para tres tipologías de aerogenerador flotante (semisumergible, ”spar-buoy” y ”tension leg platform”) y se compararon con las cargas obtenidas utilizando un modelo cuasi-estático de líneas de fondeo. Se lanzaron y postprocesaron más de 20.000 casos de carga definidos por la norma IEC 61400-3 siguiendo todos los requerimientos que una entidad certificadora requeriría a un diseñador industrial de aerogeneradores flotantes. Los resultados mostraron que el impacto de la dinámica de las líneas de fondeo, tanto en las cargas de fatiga como en las extremas, se incrementa conforme se consideran elementos situados más cerca de la plataforma: las cargas en la pala y en el eje sólo son ligeramente modificadas por la dinámica de las líneas, las cargas en la base de la torre pueden cambiar significativamente dependiendo del tipo de plataforma y, finalmente, la tensión en las líneas de fondeo depende fuertemente de la dinámica de las líneas, tanto en fatiga como en extremas, en todos los conceptos de plataforma que se han evaluado. ABSTRACT The load calculation of floating offshore wind turbine requires time-domain simulation tools taking into account all the phenomena that affect the system such as aerodynamics, structural dynamics, hydrodynamics, control actions and the mooring lines dynamics. These effects present couplings and are mutually influenced. The results provided by integrated simulation tools are used to compute the fatigue and ultimate loads needed for the structural design of the different components of the wind turbine. For this reason, their accuracy has an important influence on the optimization of the components and the final cost of the floating wind turbine. In particular, the mooring system greatly affects the global dynamics of the floater. Many integrated codes for the simulation of floating wind turbines use simplified approaches that do not consider the mooring line dynamics. An accurate simulation of the mooring system within the integrated codes can be fundamental to obtain reliable results of the system dynamics and the loads. The impact of taking into account the mooring line dynamics in the integrated simulation still has not been thoroughly quantified. The main objective of this research consists on the development of an accurate dynamic model for the simulation of mooring lines, validate it against wave tank tests and then integrate it in a simulation code for floating wind turbines. This experimentally validated tool is finally used to quantify the impact that dynamic mooring models have on the computation of fatigue and ultimate loads of floating wind turbines in comparison with quasi-static tools. This information will be very useful for future designers to decide which mooring model is adequate depending on the platform type and the expected results. The dynamic mooring lines code developed in this research is based in the Finite Element Method and is oriented to the achievement of a computationally efficient code, selecting a Lumped Mass approach. The experimental tests performed for the validation of the code were carried out at the `Ecole Centrale de Nantes (ECN) wave tank in France, consisting of a chain submerged into a water basin, anchored at the bottom of the basin, where the suspension point of the chain was excited with harmonic motions of different periods. The code showed its ability to predict the tension and the motions at several positions along the length of the line with high accuracy. The results demonstrated the importance of capturing the evolution of the mooring dynamics for the prediction of the line tension, especially for the high frequency motions. Finally, the code was used for an extensive assessment of the effect of mooring dynamics on the computation of fatigue and ultimate loads for different floating wind turbines. The loads were computed for three platforms topologies (semisubmersible, spar-buoy and tension leg platform) and compared with the loads provided using a quasi-static mooring model. More than 20,000 load cases were launched and postprocessed following the IEC 61400-3 guideline and fulfilling the conditions that a certification entity would require to an offshore wind turbine designer. The results showed that the impact of mooring dynamics in both fatigue and ultimate loads increases as elements located closer to the platform are evaluated; the blade and the shaft loads are only slightly modified by the mooring dynamics in all the platform designs, the tower base loads can be significantly affected depending on the platform concept and the mooring lines tension strongly depends on the lines dynamics both in fatigue and extreme loads in all the platform concepts evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the parallelization of an ocean model applying current multicore processor-based cluster architectures to an irregular computational mesh. The aim is to maximize the efficiency of the computational resources used. To make the best use of the resources offered by these architectures, this parallelization has been addressed at all the hardware levels of modern supercomputers: firstly, exploiting the internal parallelism of the CPU through vectorization; secondly, taking advantage of the multiple cores of each node using OpenMP; and finally, using the cluster nodes to distribute the computational mesh, using MPI for communication within the nodes. The speedup obtained with each parallelization technique as well as the combined overall speedup have been measured for the western Mediterranean Sea for different cluster configurations, achieving a speedup factor of 73.3 using 256 processors. The results also show the efficiency achieved in the different cluster nodes and the advantages obtained by combining OpenMP and MPI versus using only OpenMP or MPI. Finally, the scalability of the model has been analysed by examining computation and communication times as well as the communication and synchronization overhead due to parallelization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La evaluación de las prestaciones de las embarcaciones a vela ha constituido un objetivo para ingenieros navales y marinos desde los principios de la historia de la navegación. El conocimiento acerca de estas prestaciones, ha crecido desde la identificación de los factores clave relacionados con ellas(eslora, estabilidad, desplazamiento y superficie vélica), a una comprensión más completa de las complejas fuerzas y acoplamientos involucrados en el equilibrio. Junto con este conocimiento, la aparición de los ordenadores ha hecho posible llevar a cabo estas tareas de una forma sistemática. Esto incluye el cálculo detallado de fuerzas, pero también, el uso de estas fuerzas junto con la descripción de una embarcación a vela para la predicción de su comportamiento y, finalmente, sus prestaciones. Esta investigación tiene como objetivo proporcionar una definición global y abierta de un conjunto de modelos y reglas para describir y analizar este comportamiento. Esto se lleva a cabo sin aplicar restricciones en cuanto al tipo de barco o cálculo, sino de una forma generalizada, de modo que sea posible resolver cualquier situación, tanto estacionaria como en el dominio del tiempo. Para ello se comienza con una definición básica de los factores que condicionan el comportamiento de una embarcación a vela. A continuación se proporciona una metodología para gestionar el uso de datos de diferentes orígenes para el cálculo de fuerzas, siempre con el la solución del problema como objetivo. Esta última parte se plasma en un programa de ordenador, PASim, cuyo propósito es evaluar las prestaciones de diferentes ti pos de embarcaciones a vela en un amplio rango de condiciones. Varios ejemplos presentan diferentes usos de PASim con el objetivo de ilustrar algunos de los aspectos discutidos a lo largo de la definición del problema y su solución . Finalmente, se presenta una estructura global de cara a proporcionar una representación virtual de la embarcación real, en la cual, no solo e l comportamiento sino también su manejo, son cercanos a la experiencia de los navegantes en el mundo real. Esta estructura global se propone como el núcleo (un motor de software) de un simulador físico para el que se proporciona una especificación básica. ABSTRACT The assessment of the performance of sailing yachts, and ships in general, has been an objective for naval architects and sailors since the beginning of the history of navigation. The knowledge has grown from identifying the key factors that influence performance(length, stability, displacement and sail area), to a much more complete understanding of the complex forces and couplings involved in the equilibrium. Along with this knowledge, the advent of computers has made it possible to perform the associated tasks in a systematic way. This includes the detailed calculation of forces, but also the use of those forces, along with the description of a sailing yacht, to predict its behavior, and ultimately, its performance. The aim of this investigation is to provide a global and open definition of a set of models and rules to describe and analyze the behavior of a sailing yacht. This is done without applying any restriction to the type of yacht or calculation, but rather in a generalized way, capable of solving any possible situation, whether it is in a steady state or in the time domain. First, the basic definition of the factors that condition the behavior of a sailing yacht is given. Then, a methodology is provided to assist with the use of data from different origins for the calculation of forces, always aiming towards the solution of the problem. This last part is implemented as a computational tool, PASim, intended to assess the performance of different types of sailing yachts in a wide range of conditions. Several examples then present different uses of PASim, as a way to illustrate some of the aspects discussed throughout the definition of the problem and its solution. Finally, a global structure is presented to provide a general virtual representation of the real yacht, in which not only the behavior, but also its handling is close to the experience of the sailors in the real world. This global structure is proposed as the core (a software engine) of a physical yacht simulator, for which a basic specification is provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A minimal hypothesis is proposed concerning the brain processes underlying effortful tasks. It distinguishes two main computational spaces: a unique global workspace composed of distributed and heavily interconnected neurons with long-range axons, and a set of specialized and modular perceptual, motor, memory, evaluative, and attentional processors. Workspace neurons are mobilized in effortful tasks for which the specialized processors do not suffice. They selectively mobilize or suppress, through descending connections, the contribution of specific processor neurons. In the course of task performance, workspace neurons become spontaneously coactivated, forming discrete though variable spatio-temporal patterns subject to modulation by vigilance signals and to selection by reward signals. A computer simulation of the Stroop task shows workspace activation to increase during acquisition of a novel task, effortful execution, and after errors. We outline predictions for spatio-temporal activation patterns during brain imaging, particularly about the contribution of dorsolateral prefrontal cortex and anterior cingulate to the workspace.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cellular slime mold Dictyostelium discoideum is a widely used model system for studying a variety of basic processes in development, including cell–cell signaling, signal transduction, pattern formation, cell motility, and the movement of tissue-like aggregates of cells. Many aspects of cell motion are poorly understood, including how individual cell behavior produces the collective motion of cells observed within the mound and slug. Herein, we describe a biologically realistic model for motile D. discoideum cells that can generate active forces, that interact via surface molecules, and that can detect and respond to chemotactic signals. We model the cells as deformable viscoelastic ellipsoids and incorporate signal transduction and cell–cell signaling by using a previously developed model. The shape constraint restricts the admissible deformations but makes the simulation of a large number of interacting cells feasible. Because the model is based on known processes, the parameters can be estimated or measured experimentally. We show that this model can reproduce the observations on the chemotactic behavior of single cells, streaming during aggregation, and the collective motion of an aggregate of cells driven by a small group of pacemakers. The model predicts that the motion of two-dimensional slugs [Bonner, J. T. (1998) Proc. Natl. Acad. Sci. USA 95, 9355–9359] results from the same behaviors that are exhibited by individual cells; it is not necessary to invoke different mechanisms or behaviors. Our computational experiments also suggest previously uncharacterized phenomena that may be experimentally observable.