864 resultados para communication networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design and implementation of a measurement-based QoS and resource management framework, CNQF (Converged Networks’ QoS Management Framework). CNQF is designed to provide unified, scalable QoS control and resource management through the use of a policy-based network
management paradigm. It achieves this via distributed functional entities that are deployed to co-ordinate the resources of the transport network through centralized policy-driven decisions supported by measurement-based control architecture. We present the CNQF architecture, implementation of the
prototype and validation of various inbuilt QoS control mechanisms using real traffic flows on a Linux-based experimental test bed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates a dynamic buffer man-agement scheme for QoS control of multimedia services in be-yond 3G wireless systems. The scheme is studied in the context of the state-of-the-art 3.5G system i.e. the High Speed Downlink Packet Access (HSDPA) which enhances 3G UMTS to support high-speed packet switched services. Unlike earlier systems, UMTS-evolved systems from HSDPA and beyond incorporate mechanisms such as packet scheduling and HARQ in the base station necessitating data buffering at the air interface. This introduces a potential bottleneck to end-to-end communication. Hence, buffer management at the air interface is crucial for end-to-end QoS support of multimedia services with multi-plexed parallel diverse flows such as video and data in the same end-user session. The dynamic buffer management scheme for HSDPA multimedia sessions with aggregated real-time and non real-time flows is investigated via extensive HSDPA simulations. The impact of the scheme on end-to-end traffic performance is evaluated with an example multimedia session comprising a real-time streaming flow concurrent with TCP-based non real-time flow. Results demonstrate that the scheme can guar-antee the end-to-end QoS of the real-time streaming flow, whilst simultaneously protecting the non real-time flow from starva-tion resulting in improved end-to-end throughput performance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents and investigates a dynamic
buffer management scheme for QoS control of multimedia
services in a 3.5G wireless system i.e. the High Speed Downlink
Packet Access (HSDPA). HSDPA was introduced to enhance
UMTS for high-speed packet switched services. With HSDPA,
packet scheduling and HARQ mechanisms in the base station
require data buffering at the air interface thus introducing a
potential bottleneck to end-to-end communication. Hence, for
multimedia services with multiplexed parallel diverse flows
such as video and data in the same end-user session, buffer
management schemes in the base station are essential to support
end-to-end QoS provision. We propose a dynamic buffer management
scheme for HSDPA multimedia sessions with aggregated real-time and non real-time flows in the paper. The end-to-end performance impact of the scheme is evaluated with an example multimedia session comprising a real-time streaming
flow concurrent with TCP-based non real-time flow via extensive HSDPA simulations. Results demonstrate that the scheme can guarantee the end-to-end QoS of the real-time streaming flow, whilst simultaneously protecting non real-time flow from starvation resulting in improved end-to-end throughput performance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in Smart Grids potentially means greater susceptibility to malicious attackers. SCADA systems with legacy communication infrastructure have inherent cyber-security vulnerabilities as these systems were originally designed with little consideration of cyber threats. In order to improve cyber-security of SCADA networks, this paper presents a rule-based Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method, which includes signature-based and model-based approaches tailored for SCADA systems. The proposed signature-based rules can accurately detect several known suspicious or malicious attacks. In addition, model-based detection is proposed as a complementary method to detect unknown attacks. Finally, proposed intrusion detection approaches for SCADA networks are implemented and verified using a ruled based method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in Smart Grids potentially means greater susceptibility to malicious attackers. SCADA systems with legacy communication infrastructure have inherent cyber-security vulnerabilities as these systems were originally designed with little consideration of cyber threats. In order to improve cyber-security of SCADA networks, this paper presents a rule-based Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method, which includes signature-based and model-based approaches tailored for SCADA systems. The proposed signature-based rules can accurately detect several known suspicious or malicious attacks. In addition, model-based detection is proposed as a complementary method to detect unknown attacks. Finally, proposed intrusion detection approaches for SCADA networks are implemented and verified via Snort rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In distributed networks, it is often useful for the nodes to be aware of dense subgraphs, e.g., such a dense subgraph could reveal dense substructures in otherwise sparse graphs (e.g. the World Wide Web or social networks); these might reveal community clusters or dense regions for possibly maintaining good communication infrastructure. In this work, we address the problem of self-awareness of nodes in a dynamic network with regards to graph density, i.e., we give distributed algorithms for maintaining dense subgraphs that the member nodes are aware of. The only knowledge that the nodes need is that of the dynamic diameter D, i.e., the maximum number of rounds it takes for a message to traverse the dynamic network. For our work, we consider a model where the number of nodes are fixed, but a powerful adversary can add or remove a limited number of edges from the network at each time step. The communication is by broadcast only and follows the CONGEST model. Our algorithms are continuously executed on the network, and at any time (after some initialization) each node will be aware if it is part (or not) of a particular dense subgraph. We give algorithms that (2 + e)-approximate the densest subgraph and (3 + e)-approximate the at-least-k-densest subgraph (for a given parameter k). Our algorithms work for a wide range of parameter values and run in O(D log n) time. Further, a special case of our results also gives the first fully decentralized approximation algorithms for densest and at-least-k-densest subgraph problems for static distributed graphs. © 2012 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In distributed networks, some groups of nodes may have more inter-connections, perhaps due to their larger bandwidth availability or communication requirements. In many scenarios, it may be useful for the nodes to know if they form part of a dense subgraph, e.g., such a dense subgraph could form a high bandwidth backbone for the network. In this work, we address the problem of self-awareness of nodes in a dynamic network with regards to graph density, i.e., we give distributed algorithms for maintaining dense subgraphs (subgraphs that the member nodes are aware of). The only knowledge that the nodes need is that of the dynamic diameter D, i.e., the maximum number of rounds it takes for a message to traverse the dynamic network. For our work, we consider a model where the number of nodes are fixed, but a powerful adversary can add or remove a limited number of edges from the network at each time step. The communication is by broadcast only and follows the CONGEST model in the sense that only messages of O(log n) size are permitted, where n is the number of nodes in the network. Our algorithms are continuously executed on the network, and at any time (after some initialization) each node will be aware if it is part (or not) of a particular dense subgraph. We give algorithms that approximate both the densest subgraph, i.e., the subgraph of the highest density in the network, and the at-least-k-densest subgraph (for a given parameter k), i.e., the densest subgraph of size at least k. We give a (2 + e)-approximation algorithm for the densest subgraph problem. The at-least-k-densest subgraph is known to be NP-hard for the general case in the centralized setting and the best known algorithm gives a 2-approximation. We present an algorithm that maintains a (3+e)-approximation in our distributed, dynamic setting. Our algorithms run in O(Dlog n) time. © 2012 Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By 2015, with the proliferation of wireless multimedia applications and services (e.g., mobile TV, video on demand, online video repositories, immersive video interaction, peer to peer video streaming, and interactive video gaming), and any-time anywhere communication, the number of smartphones and tablets will exceed 6.5 billion as the most common web access devices. Data volumes in wireless multimedia data-intensive applications and mobile web services are projected to increase by a factor of 10 every five years, associated with a 20 percent increase in energy consumption, 80 percent of which is multimedia traffic related. In turn, multimedia energy consumption is rising at 16 percent per year, doubling every six years. It is estimated that energy costs alone account for as much as half of the annual operating expenditure. This has prompted concerted efforts by major operators to drastically reduce carbon emissions by up to 50 percent over the next 10 years. Clearly, there is an urgent need for new disruptive paradigms of green media to bridge the gap between wireless technologies and multimedia applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The allocation of a large amount of bandwidth by regulating bodies in the 70/80 GHz band, i.e., the E-band, has opened up new potentials and challenges for providing affordable and reliable Gigabit per second wireless point-to-point links. This article first reviews the available bandwidth and licensing regulations in the E-band. Subsequently, different propagation models, e.g., the ITU-R and Cane models, are compared against measurement results and it is concluded that to meet specific availability requirements, E-band wireless systems may need to be designed with larger fade margins compared to microwave systems. A similar comparison is carried out between measurements and models for oscillator phase noise. It is confirmed that phase noise characteristics, that are neglected by the models used for narrowband systems, need to be taken into account for the wideband systems deployed in the E-band. Next, a new multi-input multi-output (MIMO) transceiver design, termed continuous aperture phased (CAP)-MIMO, is presented. Simulations show that CAP-MIMO enables E-band systems to achieve fiber-optic like throughputs. Finally, it is argued that full-duplex relaying can be used to greatly enhance the coverage of E-band systems without sacrificing throughput, thus, facilitating their application in establishing the backhaul of heterogeneous networks.