792 resultados para cloud-based computing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vision system for recognizing rigid and articulated three-dimensional objects in two-dimensional images is described. Geometrical models are extracted from a commercial computer aided design package. The models are then augmented with appearance and functional information which improves the system's hypothesis generation, hypothesis verification, and pose refinement. Significant advantages over existing CAD-based vision systems, which utilize only information available in the CAD system, are realized. Examples show the system recognizing, locating, and tracking a variety of objects in a robot work-cell and in natural scenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the evaluation in power consumption of a clocking technique for pipelined designs. The technique shows a dynamic power consumption saving of around 30% over a conventional global clocking mechanism. The results were obtained from a series of experiments of a systolic circuit implemented in Virtex-II devices. The conversion from a global-clocked pipelined design to the proposed technique is straightforward, preserving the original datapath design. The savings can be used immediately either as a power reduction benefit or to increase the frequency of operation of a design for the same power consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A form of three-dimensional X-ray imaging, called Object 3-D, is introduced, where the relevant subject material is represented as discrete ‘objects’. The surface of each such object is derived accurately from the projections of its outline, and of its other discontinuities, in about ten conventional X-ray views, distributed in solid angle. This technique is suitable for many applications, and permits dramatic savings in radiation exposure and in data acquisition and manipulation. It is well matched to user-friendly interactive displays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate estimates for the fall speed of natural hydrometeors are vital if their evolution in clouds is to be understood quantitatively. In this study, laboratory measurements of the terminal velocity vt for a variety of ice particle models settling in viscous fluids, along with wind-tunnel and field measurements of ice particles settling in air, have been analyzed and compared to common methods of computing vt from the literature. It is observed that while these methods work well for a number of particle types, they fail for particles with open geometries, specifically those particles for which the area ratio Ar is small (Ar is defined as the area of the particle projected normal to the flow divided by the area of a circumscribing disc). In particular, the fall speeds of stellar and dendritic crystals, needles, open bullet rosettes, and low-density aggregates are all overestimated. These particle types are important in many cloud types: aggregates in particular often dominate snow precipitation at the ground and vertically pointing Doppler radar measurements. Based on the laboratory data, a simple modification to previous computational methods is proposed, based on the area ratio. This new method collapses the available drag data onto an approximately universal curve, and the resulting errors in the computed fall speeds relative to the tank data are less than 25% in all cases. Comparison with the (much more scattered) measurements of ice particles falling in air show strong support for this new method, with the area ratio bias apparently eliminated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud-resolving numerical simulations of airflow over a diurnally heated mountain ridge are conducted to explore the mechanisms and sensitivities of convective initiation under high pressure conditions. The simulations are based on a well-observed convection event from the Convective and Orographically Induced Precipitation Study (COPS) during summer 2007, where an isolated afternoon thunderstorm developed over the Black Forest mountains of central Europe, but they are idealized to facilitate understanding and reduce computational expense. In the conditionally unstable but strongly inhibited flow under consideration, sharp horizontal convergence over the mountain acts to locally weaken the inhibition and moisten the dry midtroposphere through shallow cumulus detrainment. The onset of deep convection occurs not through the deep ascent of a single updraft but rather through a rapid succession of thermals that are vented through the mountain convergence zone into the deepening cloud mass. Emerging thermals rise through the saturated wakes of their predecessors, which diminishes the suppressive effects of entrainment and allows for rapid glaciation above the freezing level as supercooled cloud drops rime onto preexisting ice particles. These effects strongly enhance the midlevel cloud buoyancy and enable rapid ascent to the tropopause. The existence and vigor of the convection is highly sensitive to small changes in background wind speed U0, which controls the strength of the mountain convergence and the ability of midlevel moisture to accumulate above the mountain. Whereas vigorous deep convection develops for U0 = 0 m s−1, deep convection is completely eliminated for U0 = 3 m s−1. Although deep convection is able to develop under intermediate winds (U0 = 1.5 m s−1), its formation is highly sensitive to small-amplitude perturbations in the initial flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Construction planning plays a fundamental role in construction project management that requires team working among planners from a diverse range of disciplines and in geographically dispersed working situations. Model-based four-dimensional (4D) computer-aided design (CAD) groupware, though considered a possible approach to supporting collaborative planning, is still short of effective collaborative mechanisms for teamwork due to methodological, technological and social challenges. Targeting this problem, this paper proposes a model-based groupware solution to enable a group of multidisciplinary planners to perform real-time collaborative 4D planning across the Internet. In the light of the interactive definition method, and its computer-supported collaborative work (CSCW) design analysis, the paper discusses the realization of interactive collaborative mechanisms from software architecture, application mode, and data exchange protocol. These mechanisms have been integrated into a groupware solution, which was validated by a planning team in a truly geographically dispersed condition. Analysis of the validation results revealed that the proposed solution is feasible for real-time collaborative 4D planning to gain a robust construction plan through collaborative teamwork. The realization of this solution triggers further considerations about its enhancement for wider groupware applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper we characterize the statistical properties of non-precipitating tropical ice clouds (deep ice anvils resulting from deep convection and cirrus clouds) over Niamey, Niger, West Africa, and Darwin, northern Australia, using ground-based radar–lidar observations from the Atmospheric Radiation Measurement (ARM) programme. The ice cloud properties analysed in this paper are the frequency of ice cloud occurrence, cloud fraction, the morphological properties (cloud-top height, base height, and thickness), the microphysical and radiative properties (ice water content, visible extinction, effective radius, terminal fall speed, and concentration), and the internal cloud dynamics (in-cloud vertical air velocity). The main highlight of the paper is that it characterizes for the first time the probability density functions of the tropical ice cloud properties, their vertical variability and their diurnal variability at the same time. This is particularly important over West Africa, since the ARM deployment in Niamey provides the first vertically resolved observations of non-precipitating ice clouds in this crucial area in terms of redistribution of water and energy in the troposphere. The comparison between the two sites also provides an additional observational basis for the evaluation of the parametrization of clouds in large-scale models, which should be able to reproduce both the statistical properties at each site and the differences between the two sites. The frequency of ice cloud occurrence is found to be much larger over Darwin when compared to Niamey, and with a much larger diurnal variability, which is well correlated with the diurnal cycle of deep convective activity. The diurnal cycle of the ice cloud occurrence over Niamey is also much less correlated with that of deep convective activity than over Darwin, probably owing to the fact that Niamey is further away from the deep convective sources of the region. The frequency distributions of cloud fraction are strongly bimodal and broadly similar over the two sites, with a predominance of clouds characterized either by a very small cloud fraction (less than 0.3) or a very large cloud fraction (larger than 0.9). The ice clouds over Darwin are also much thicker (by 1 km or more statistically) and are characterized by a much larger diurnal variability than ice clouds over Niamey. Ice clouds over Niamey are also characterized by smaller particle sizes and fall speeds but in much larger concentrations, thereby carrying more ice water and producing more visible extinction than the ice clouds over Darwin. It is also found that there is a much larger occurrence of downward in-cloud air motions less than 1 m s−1 over Darwin, which together with the larger fall speeds retrieved over Darwin indicates that the life cycle of ice clouds is probably shorter over Darwin than over Niamey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the CALIPSO lidar footprint and the other measurements of the constellation. The precision and near simultaneity of this overlap creates a unique multisatellite observing system for studying the atmospheric processes essential to the hydrological cycle.The vertical profiles of cloud properties provided by CloudSat on the global scale fill a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring these profiles requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with data from other active and passive sensors of the constellation. This paper describes the underpinning science and general overview of the mission, provides some idea of the expected products and anticipated application of these products, and the potential capability of the A-Train for cloud observations. Notably, the CloudSat mission is expected to stimulate new areas of research on clouds. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA's JPL, the Canadian Space Agency, Colorado State University, the U.S. Air Force, and the U.S. Department of Energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Along-Track Scanning Radiometers (ATSRs) provide a long time-series of measurements suitable for the retrieval of cloud properties. This work evaluates the freely-available Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) dataset (version 3) created from the ATSR-2 (1995�2003) and Advanced ATSR (AATSR; 2002 onwards) records. Users are recommended to consider only retrievals flagged as high-quality, where there is a good consistency between the measurements and the retrieved state (corresponding to about 60% of converged retrievals over sea, and more than 80% over land). Cloud properties are found to be generally free of any significant spurious trends relating to satellite zenith angle. Estimates of the random error on retrieved cloud properties are suggested to be generally appropriate for optically-thick clouds, and up to a factor of two too small for optically-thin cases. The correspondence between ATSR-2 and AATSR cloud properties is high, but a relative calibration difference between the sensors of order 5�10% at 660 nm and 870 nm limits the potential of the current version of the dataset for trend analysis. As ATSR-2 is thought to have the better absolute calibration, the discussion focusses on this portion of the record. Cloud-top heights from GRAPE compare well to ground-based data at four sites, particularly for shallow clouds. Clouds forming in boundary-layer inversions are typically around 1 km too high in GRAPE due to poorly-resolved inversions in the modelled temperature profiles used. Global cloud fields are compared to satellite products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements, and a climatology of liquid water content derived from satellite microwave radiometers. In all cases the main reasons for differences are linked to differing sensitivity to, and treatment of, multi-layer cloud systems. The correlation coefficient between GRAPE and the two MODIS products considered is generally high (greater than 0.7 for most cloud properties), except for liquid and ice cloud effective radius, which also show biases between the datasets. For liquid clouds, part of the difference is linked to choice of wavelengths used in the retrieval. Total cloud cover is slightly lower in GRAPE (0.64) than the CALIOP dataset (0.66). GRAPE underestimates liquid cloud water path relative to microwave radiometers by up to 100 g m�2 near the Equator and overestimates by around 50 g m�2 in the storm tracks. Finally, potential future improvements to the algorithm are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data. It effectively widens the active–passive retrieved cross-section (RXS) of cloud properties, thereby enabling computation of radiative fluxes and radiances that can be compared with measured values in an attempt to perform radiative closure experiments that aim to assess the RXS. For this introductory study, A-train data were used to verify the scene-construction algorithm and only 1D radiative transfer calculations were performed. The construction algorithm fills off-RXS recipient pixels by computing sums of squared differences (a cost function F) between their spectral radiances and those of potential donor pixels/columns on the RXS. Of the RXS pixels with F lower than a certain value, the one with the smallest Euclidean distance to the recipient pixel is designated as the donor, and its retrieved cloud properties and other attributes such as 1D radiative heating rates are consigned to the recipient. It is shown that both the RXS itself and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery can be reconstructed extremely well using just visible and thermal infrared channels. Suitable donors usually lie within 10 km of the recipient. RXSs and their associated radiative heating profiles are reconstructed best for extensive planar clouds and less reliably for broken convective clouds. Domain-average 1D broadband radiative fluxes at the top of theatmosphere(TOA)for (21 km)2 domains constructed from MODIS, CloudSat andCloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data agree well with coincidental values derived from Clouds and the Earth’s Radiant Energy System (CERES) radiances: differences betweenmodelled and measured reflected shortwave fluxes are within±10Wm−2 for∼35% of the several hundred domains constructed for eight orbits. Correspondingly, for outgoing longwave radiation∼65% are within ±10Wm−2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In numerical weather prediction (NWP) data assimilation (DA) methods are used to combine available observations with numerical model estimates. This is done by minimising measures of error on both observations and model estimates with more weight given to data that can be more trusted. For any DA method an estimate of the initial forecast error covariance matrix is required. For convective scale data assimilation, however, the properties of the error covariances are not well understood. An effective way to investigate covariance properties in the presence of convection is to use an ensemble-based method for which an estimate of the error covariance is readily available at each time step. In this work, we investigate the performance of the ensemble square root filter (EnSRF) in the presence of cloud growth applied to an idealised 1D convective column model of the atmosphere. We show that the EnSRF performs well in capturing cloud growth, but the ensemble does not cope well with discontinuities introduced into the system by parameterised rain. The state estimates lose accuracy, and more importantly the ensemble is unable to capture the spread (variance) of the estimates correctly. We also find, counter-intuitively, that by reducing the spatial frequency of observations and/or the accuracy of the observations, the ensemble is able to capture the states and their variability successfully across all regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.