800 resultados para cloud computing datacenter performance QoS
Resumo:
Peer-reviewed
Resumo:
Laser scanning is becoming an increasingly popular method for measuring 3D objects in industrial design. Laser scanners produce a cloud of 3D points. For CAD software to be able to use such data, however, this point cloud needs to be turned into a vector format. A popular way to do this is to triangulate the assumed surface of the point cloud using alpha shapes. Alpha shapes start from the convex hull of the point cloud and gradually refine it towards the true surface of the object. Often it is nontrivial to decide when to stop this refinement. One criterion for this is to do so when the homology of the object stops changing. This is known as the persistent homology of the object. The goal of this thesis is to develop a way to compute the homology of a given point cloud when processed with alpha shapes, and to infer from it when the persistent homology has been achieved. Practically, the computation of such a characteristic of the target might be applied to power line tower span analysis.
Resumo:
Broadcasting systems are networks where the transmission is received by several terminals. Generally broadcast receivers are passive devices in the network, meaning that they do not interact with the transmitter. Providing a certain Quality of Service (QoS) for the receivers in heterogeneous reception environment with no feedback is not an easy task. Forward error control coding can be used for protection against transmission errors to enhance the QoS for broadcast services. For good performance in terrestrial wireless networks, diversity should be utilized. The diversity is utilized by application of interleaving together with the forward error correction codes. In this dissertation the design and analysis of forward error control and control signalling for providing QoS in wireless broadcasting systems are studied. Control signaling is used in broadcasting networks to give the receiver necessary information on how to connect to the network itself and how to receive the services that are being transmitted. Usually control signalling is considered to be transmitted through a dedicated path in the systems. Therefore, the relationship of the signaling and service data paths should be considered early in the design phase. Modeling and simulations are used in the case studies of this dissertation to study this relationship. This dissertation begins with a survey on the broadcasting environment and mechanisms for providing QoS therein. Then case studies present analysis and design of such mechanisms in real systems. The mechanisms for providing QoS considering signaling and service data paths and their relationship at the DVB-H link layer are analyzed as the first case study. In particular the performance of different service data decoding mechanisms and optimal signaling transmission parameter selection are presented. The second case study investigates the design of signaling and service data paths for the more modern DVB-T2 physical layer. Furthermore, by comparing the performances of the signaling and service data paths by simulations, configuration guidelines for the DVB-T2 physical layer signaling are given. The presented guidelines can prove useful when configuring DVB-T2 transmission networks. Finally, recommendations for the design of data and signalling paths are given based on findings from the case studies. The requirements for the signaling design should be derived from the requirements for the main services. Generally, these requirements for signaling should be more demanding as the signaling is the enabler for service reception.
Resumo:
In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
This study examines the practice of supply chain management problems and the perceived demand information distortion’s (the bullwhip effect) reduction with the interfirm information system, which is delivered as a cloud service to a company operating in the telecommunications industry. The purpose is to shed light in practice that do the interfirm information system have impact on the performance of the supply chain and in particularly the reduction of bullwhip effect. In addition, a holistic case study of the global telecommunications company's supply chain is presented and also the challenges it’s facing, and this study also proposes some measures to improve the situation. The theoretical part consists of the supply chain and its management, as well as increasing the efficiency and introducing the theories and related previous research. In addition, study presents performance metrics for the bullwhip effect detection and tracking. The theoretical part ends in presenting cloud -based business intelligence theoretical framework used in the background of this study. The research strategy is a qualitative case study, supported by quantitative data, which is collected from a telecommunication sector company's databases. Qualitative data were gathered mainly with two open interviews and the e-mail exchange during the development project. In addition, other materials from the company were collected during the project and the company's web site information was also used as the source. The data was collected to a specific case study database in order to increase reliability. The results show that the bullwhip effect can be reduced with the interfirm information system and with the use of CPFR and S&OP models and in particularly combining them to an integrated business planning. According to this study the interfirm information system does not, however, solve all of the supply chain and their effectiveness -related problems, because also the company’s processes and human activities have a major impact.
Resumo:
Nowadays, when most of the business are moving forward to sustainability by providing or getting different services from different vendors, Service Level Agreement (SLA) becomes very important for both the business providers/vendors and as well as for users/customers. There are many ways to inform users/customers about various services with its inherent execution functionalities and even non-functional/Quality of Services (QoS) aspects through negotiating, evaluating or monitoring SLAs. However, these traditional SLA actually do not cover eco-efficient green issues or IT ethics issues for sustainability. That is why green SLA (GSLA) should come into play. GSLA is a formal agreement incorporating all the traditional commitments as well as green issues and ethics issues in IT business sectors. GSLA research would survey on different traditional SLA parameters for various services like as network, compute, storage and multimedia in IT business areas. At the same time, this survey could focus on finding the gaps and incorporation of these traditional SLA parameters with green issues for all these mentioned services. This research is mainly points on integration of green parameters in existing SLAs, defining GSLA with new green performance indicators and their measurable units. Finally, a GSLA template could define compiling all the green indicators such as recycling, radio-wave, toxic material usage, obsolescence indication, ICT product life cycles, energy cost etc for sustainable development. Moreover, people’s interaction and IT ethics issues such as security and privacy, user satisfaction, intellectual property right, user reliability, confidentiality etc could also need to add for proposing a new GSLA. However, integration of new and existing performance indicators in the proposed GSLA for sustainable development could be difficult for ICT engineers. Therefore, this research also discovers the management complexity of proposed green SLA through designing a general informational model and analyses of all the relationships, dependencies and effects between various newly identified services under sustainability pillars. However, sustainability could only be achieved through proper implementation of newly proposed GSLA, which largely depends on monitoring the performance of the green indicators. Therefore, this research focuses on monitoring and evaluating phase of GSLA indicators through the interactions with traditional basic SLA indicators, which would help to achieve proper implementation of future GSLA. Finally, this newly proposed GSLA informational model and monitoring aspects could definitely help different service providers/vendors to design their future business strategy in this new transitional sustainable society.
Resumo:
The information technology (IT) industry has recently witnessed the proliferation of cloud services, which have allowed IT service providers to deliver on-demand resources to customers over the Internet. This frees both service providers and consumers from traditional IT-related burdens such as capital and operating expenses and allows them to respond rapidly to new opportunities in the market. Due to the popularity and growth of cloud services, numerous researchers have conducted studies on various aspects of cloud services, both positive and negative. However, none of those studies have connected all relevant information to provide a holistic picture of the current state of cloud service research. This study aims to investigate that current situation and propose the most promising future directions. In order to determine achieve these goals, a systematic literature review was conducted on studies with a primary focus on cloud services. Based on carefully crafted inclusion criteria, 52 articles from highly credible online sources were selected for the review. To define the main focus of the review and facilitate the analysis of literature, a conceptual framework with five main factors was proposed. The selected articles were organized under the factors of the proposed framework and then synthesized using a narrative technique. The results of this systematic review indicate that the impacts of cloud services on enterprises were the factor best covered by contemporary research. Researchers were able to present valuable findings about how cloud services impact various aspects of enterprises such as governance, performance, and security. By contrast, the role of service provider sub-contractors in the cloud service market remains largely uninvestigated, as do cloud-based enterprise software and cloud-based office systems for consumers. Moreover, the results also show that researchers should pay more attention to the integration of cloud services into legacy IT systems to facilitate the adoption of cloud services by enterprise users. After the literature synthesis, the present study proposed several promising directions for cloud service research by outlining research questions for the underexplored areas of cloud services, in order to facilitate the development of cloud service markets in the future.
Resumo:
Variations in different types of genomes have been found to be responsible for a large degree of physical diversity such as appearance and susceptibility to disease. Identification of genomic variations is difficult and can be facilitated through computational analysis of DNA sequences. Newly available technologies are able to sequence billions of DNA base pairs relatively quickly. These sequences can be used to identify variations within their specific genome but must be mapped to a reference sequence first. In order to align these sequences to a reference sequence, we require mapping algorithms that make use of approximate string matching and string indexing methods. To date, few mapping algorithms have been tailored to handle the massive amounts of output generated by newly available sequencing technologies. In otrder to handle this large amount of data, we modified the popular mapping software BWA to run in parallel using OpenMPI. Parallel BWA matches the efficiency of multithreaded BWA functions while providing efficient parallelism for BWA functions that do not currently support multithreading. Parallel BWA shows significant wall time speedup in comparison to multithreaded BWA on high-performance computing clusters, and will thus facilitate the analysis of genome sequencing data.
Resumo:
Systems which employ underwater acoustic energy for observation or communication are called sonar systems. The active and passive sonars are the two types of systems used for the detection and localisation of targets in underwater. Active sonar involves the transmission of an acoustic signal which, when reflected from a target, provides the sonar receiver with a basis for the detection and estimation. Passive sonar bases its detection and estimation on sounds which emanate from the target itself--Machinery noise, flow noise, transmission from its own active sonar etc.Electroacoustic transducers are used in sonar systems for the transmission and detection of acoustic energy. The transducer which is used for the transmission of acoustic energy is called projector and the one used for reception is called hydrophone. Since a single transducer is not sufficient enough for long range and directional transmission, a properly distributed array of transducers are to be used [9-11].The need and requirement for spatial processing to generate the most favourable directivity patterns for transducer systems used in underwater applications have already been analysed by several investigators [12-21].The desired directivity pattern can be either generated by the use of suitable focussing techniques or by an array of non-directional sensor elements, whose arrangements, spacing and the mode of excitation provide the required radiation pattern or by the combination of these.While computing that the directivity pattern, it is assumed strength of the elements are unaffected by the the source acoustic pressure at each source. However, in closely packed a r r a y s , the acoustic interaction effects experienced among the elements will modify the behaviour of individual elements and in turn will reduce the acoust ic source leve 1 wi t h respect to the maximum t heoret i cal va 1ue a s well as degrade the beam pa t tern. Th i s ef fect shou 1d be reduced in systems that are intended to generate high acoustic power output and unperturbed beam patterns [2,22-31].The work herein presented includes an approach for designing efficient and well behaved underwater transd~cer arrays, taking into account the acoustic interaction effect experienced among the closely packed multielement arrays.Architectural modifications reducing the interaction effect different radiating apertures.
Resumo:
The proliferation of wireless sensor networks in a large spectrum of applications had been spurered by the rapid advances in MEMS(micro-electro mechanical systems )based sensor technology coupled with low power,Low cost digital signal processors and radio frequency circuits.A sensor network is composed of thousands of low cost and portable devices bearing large sensing computing and wireless communication capabilities. This large collection of tiny sensors can form a robust data computing and communication distributed system for automated information gathering and distributed sensing.The main attractive feature is that such a sensor network can be deployed in remote areas.Since the sensor node is battery powered,all the sensor nodes should collaborate together to form a fault tolerant network so as toprovide an efficient utilization of precious network resources like wireless channel,memory and battery capacity.The most crucial constraint is the energy consumption which has become the prime challenge for the design of long lived sensor nodes.
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. This paper presents a novel double digit decimal multiplication (DDDM) technique that offers low latency and high throughput. This design performs two digit multiplications simultaneously in one clock cycle. Double digit fixed point decimal multipliers for 7digit, 16 digit and 34 digit are simulated using Leonardo Spectrum from Mentor Graphics Corporation using ASIC Library. The paper also presents area and delay comparisons for these fixed point multipliers on Xilinx, Altera, Actel and Quick logic FPGAs. This multiplier design can be extended to support decimal floating point multiplication for IEEE 754- 2008 standard.
Resumo:
General-purpose computing devices allow us to (1) customize computation after fabrication and (2) conserve area by reusing expensive active circuitry for different functions in time. We define RP-space, a restricted domain of the general-purpose architectural space focussed on reconfigurable computing architectures. Two dominant features differentiate reconfigurable from special-purpose architectures and account for most of the area overhead associated with RP devices: (1) instructions which tell the device how to behave, and (2) flexible interconnect which supports task dependent dataflow between operations. We can characterize RP-space by the allocation and structure of these resources and compare the efficiencies of architectural points across broad application characteristics. Conventional FPGAs fall at one extreme end of this space and their efficiency ranges over two orders of magnitude across the space of application characteristics. Understanding RP-space and its consequences allows us to pick the best architecture for a task and to search for more robust design points in the space. Our DPGA, a fine- grained computing device which adds small, on-chip instruction memories to FPGAs is one such design point. For typical logic applications and finite- state machines, a DPGA can implement tasks in one-third the area of a traditional FPGA. TSFPGA, a variant of the DPGA which focuses on heavily time-switched interconnect, achieves circuit densities close to the DPGA, while reducing typical physical mapping times from hours to seconds. Rigid, fabrication-time organization of instruction resources significantly narrows the range of efficiency for conventional architectures. To avoid this performance brittleness, we developed MATRIX, the first architecture to defer the binding of instruction resources until run-time, allowing the application to organize resources according to its needs. Our focus MATRIX design point is based on an array of 8-bit ALU and register-file building blocks interconnected via a byte-wide network. With today's silicon, a single chip MATRIX array can deliver over 10 Gop/s (8-bit ops). On sample image processing tasks, we show that MATRIX yields 10-20x the computational density of conventional processors. Understanding the cost structure of RP-space helps us identify these intermediate architectural points and may provide useful insight more broadly in guiding our continual search for robust and efficient general-purpose computing structures.
Resumo:
This paper presents a new charging scheme for cost distribution along a point-to-multipoint connection when destination nodes are responsible for the cost. The scheme focus on QoS considerations and a complete range of choices is presented. These choices go from a safe scheme for the network operator to a fair scheme to the customer. The in-between cases are also covered. Specific and general problems, like the incidence of users disconnecting dynamically is also discussed. The aim of this scheme is to encourage the users to disperse the resource demand instead of having a large number of direct connections to the source of the data, which would result in a higher than necessary bandwidth use from the source. This would benefit the overall performance of the network. The implementation of this task must balance between the necessity to offer a competitive service and the risk of not recovering such service cost for the network operator. Throughout this paper reference to multicast charging is made without making any reference to any specific category of service. The proposed scheme is also evaluated with the criteria set proposed in the European ATM charging project CANCAN
Resumo:
In the B-ISDN there is a provision for four classes of services, all of them supported by a single transport network (the ATM network). Three of these services, the connected oriented (CO) ones, permit connection access control (CAC) but the fourth, the connectionless oriented (CLO) one, does not. Therefore, when CLO service and CO services have to share the same ATM link, a conflict may arise. This is because a bandwidth allocation to obtain maximum statistical gain can damage the contracted ATM quality of service (QOS); and vice versa, in order to guarantee the contracted QOS, the statistical gain have to be sacrificed. The paper presents a performance evaluation study of the influence of the CLO service on a CO service (a circuit emulation service or a variable bit-rate service) when sharing the same link