951 resultados para chlorophyll mutation ultrastructure 2-D
Resumo:
Este trabajo se realizó en el km 43 carretera Tipitapa – Masaya en las tierras del productor Agapito Ñurinda. Con el objetivo de generar información en el manejo de plagas y enfermedades en el cultivo de sorgo (Sorghum bicolor (L).Moench), durante la época de postrera. El diseño experimental utilizado fue Bloque Completo al Azar (BCA), con cuatro tratamientos y cuatro repeticiones: T1 Una aplicación de Cypermetrina y Benomil en etapa vegetativa y reproductiva (inicio de floración y llenado de grano) T1 (1 C + B), T2 Dos aplicaciones de Cypermetrina y Benomil en etapa vegetativa y reproductiva (inicio de floracion y llenado de grano) T2 (2C + B), T3 Una aplicación de Dipel y Caldo sulfocálcico en etapa vegetativa y reproductiva (inicio defloración y llenado de grano) T3 (1 D + Cs), T4 Dos aplicaciones de Dipel y Caldo sulfocálcico en etapa vegetativa y reproductivo (in icio de floración y llenado de grano) T4 (2 D + Cs). Las variables evaluados fueron: Porcentaje de daño fresco causado por el Gusano Cogollero (Spodoptera frugiperda J. E. Smith), Incidencia poblacional de Mosquita del sorgo (Stenoddiplosis sorghicola Coquillet), Incidencia poblacional de Chinche pata de hoja (Leptoglossus zonatus Dallas), Severidad de enfermedades foliares. Basadas en la escala propuesta por (Thakur, R. P., 1995), Severidad de mohos de la panoja, Rendimiento del grano. Determinado por la siguiente fórmula descrita por Barreto y Raun (1988). Se realizó análisis de varianza (ANDEVA). Para el gusano cogollero el análisis estadístico indica que no existen diferencias estadísticas entre los tratamientos evaluados, sin embargo existen diferencias en los porcentajes de daño en las diferentes fechas de muestreo, lo que significa que el porcentaje de daño de la plaga varió de una fecha a otra. Los menores porcentajes de daño fresco los presentó los tratamientos T1 (1 C + B), y T2 (2C + B). El análisis estadístico realizado para enfermedades indica que no hubo diferencia estadística entre los tratamientos, pero si diferencia en la severidad de las enfermedades entre las fechas de muestreos, sin embargo el T2 (2 C + Cs), resultó con el menor valor medio de severidad (2.7613). Análisis estadístico realizado.
Resumo:
Linear stability analysis was performed to study the mechanism of transition of thermocapillary convection in liquid bridges with liquid volume ratios ranging from 0.4 to 1.2, aspect ratio of 0.75 and Prandtl number of 100. 2-D governing equations were solved to obtain the steady axi-symmetric basic flow and temperature distributions. 3-D perturbation equations were discretized at the collocation grid points using the Chebyshev-collocation method. Eigenvalues and eigenfunctions were obtained by using the Q-R. method. The predicted critical Marangoni numbers and critical frequencies were compared with data from space experiments. The disturbance of the temperature distribution on the free surface causes the onset of oscillatory convection. It is shown that the origin of instability is related to the hydrothermal origin for convections in large-Prandtl-number liquid bridges. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
<正> 符 号a——穿透裂纹的裂纹长度,硬币形裂纹 的裂纹半径;a_0——初始裂纹长度;A——在N-K关系(方程1)中的比例 常数;B——试件厚度;C——在裂纹扩展关系(方程2)中的比 例常数;D——塑性体积和声发射计数中的比例常 数(方程14);F——在楔形张开加载(WOL)断裂韧 性试件上的拉伸载荷;
Resumo:
The present paper describes a systematic study of argon plasmas in a bell-jar inductively coupled plasma (ICP) source over the range of pressure 5-20 mtorr and power input 0.2-0.5 kW, Experimental measurements as well as results of numerical simulations are presented. The models used in the study include the well-known global balance model (or the global model) as well as a detailed two-dimensional (2-D) fluid model of the system, The global model is able to provide reasonably accurate values for the global electron temperature and plasma density, The 2-D model provides spatial distributions of various plasma parameters that make it possible to compare with data measured in the experiments, The experimental measurements were obtained using a tuned Langmuir double-probe technique to reduce the RF interference and obtain the light versus current (I-V) characteristics of the probe. Time-averaged electron temperature and plasma density were measured for various combinations of pressure and applied RF power, The predictions of the 2-D model were found to be in good qualitative agreement with measured data, It was found that the electron temperature distribution T-e was more or less uniform in the chamber, It was also seen that the electron temperature depends primarily on pressure, but is almost independent of the power input, except in the very low-pressure regime. The plasma density goes up almost linearly with the power input.
Resumo:
According to the experimental results, there exist large-scale coherent structures in the outer region of a turbulent boundary layer, which have been studied by many authors.As experimental results, Antonia (1990) showed the phase- aver aged streamlines and isovorticity lines of the large-scale coherent structures in a turbulent boundary layer for different Reynolds numbers. Based on the hydrodynamic stability theory, the 2-D theoretical model for the large-scale structures was proposed by Luo and Zhou, in which the eddy viscosity was defined as a complex function of the position in the normal direction. The theoretical results showed in ref. were in agreement with those in ref. However, there were two problems in the results. One is that in the experimental results, there were divergent focuses between two saddle points in the streamlines, but in the theoretical results, there were centers. The other is that the stretched parts of the isovorticity lines appear at the location of centers in the theoretical results, while in the experimental results they located somewhere between the focuses and saddle points. The reason is that the computations were based on a 2-D model.
Resumo:
In the present paper, argon (Ar) plasmas in a bell jar inductively coupled plasma (ICP) source are systematically studied over pressures from 5 to 20 mtorr and power inputs from 0.2 to 0.5 kW. In this study, both a two-dimensional (2-D) fluid model simulation and global model calculation are compared, The 2-D fluid model simulation with a self-consistent power deposition is developed to describe the Ar plasma behavior as well as predict the plasma parameter distributions, Finally, a quantitative comparison between the global model and the fluid model is made to test their validity.
Resumo:
Using a 2-D hybrid model, the authors have found that external currents play an important role in the plasma parameters in the reactor. The plasma density, temperature and electrostatic potential would be significantly influenced by the applied external currents.
Resumo:
In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.
Resumo:
A high-order accurate finite-difference scheme, the upwind compact method, is proposed. The 2-D unsteady incompressible Navier-Stokes equations are solved in primitive variables. The nonlinear convection terms in the governing equations are approximated by using upwind biased compact difference, and other spatial derivative terms are discretized by using the fourth-order compact difference. The upwind compact method is used to solve the driven flow in a square cavity. Solutions are obtained for Reynolds numbers as high as 10000. When Re less than or equal to 5000, the results agree well with those in literature. When Re = 7500 and Re = 10000, there is no convergence to a steady laminar solution, and the flow becomes unsteady and periodic.
Two-dimensional short surface-waves of an oscillating cylinder with arbitrary shape of cross-section
Resumo:
The 2-D short surface waves produced by a partially submerged cylinder which performsarbitrary oscillating motion are discussed. The uniformly valid solution which is applicableto all kinds of cylinder wall cases at waterline point is obtained. It is pointed out that thesolution obtained by Holford[J] for the vertical oscillating motion of a cylinder is incomplete.The reason why his solution cannot go over to that for the case of vertical cylinder wall atwaterline point is also pointed out.
Resumo:
黄河下游花园口至夹河滩河段系典型的游荡型河段。在该河段,黄河大堤内范围宽广,一般洪水频率年份,水流主要限制在主槽内,因此大堤内分布有不少居民点以及纵横交错的保护居民点的生产堤和不少高于地面的灌溉渠堤和公路,使洪水行洪范围受到了很大的限制。当洪峰流量很大时,洪水将造成生产堤溃决,极大地危害滩区居民的生活。因此,设计模拟模型计算网络时需要考虑大堤、生产堤、明显高于地面的道路等阻水建筑物的影响,使这些堤及公路成为计算格网的边。不规则四边形网格能够很好地拟合黄河这种复杂的计算域。数值模拟时采用有限体积法,为确保通量的单向性,文中使用Osher格式计算通量。通过对1982年洪水的模拟,模拟结果表明了模型的合理性。
Resumo:
根据NS方程组的一阶迎风和二阶中心有限体积(UFV和CFV)格式,导出NS方程组迎风和中心摄动有限体积(UPFV和CPFV)格式.该格式通过把控制体界面质量通量摄动展开成网格间距的幂级数,并由守恒方程本身求得幂级数系数而获得.迎风和中心摄动有限体积格式使用了与一阶迎风和二阶中心格式相同的基点数和相同的表达形式,宜于计算机编程.顶盖驱动方腔流和驻点流标量输运的数值实验证明,迎风PFV格式比一阶UFV、二阶CFV格式有更高的精度,更高的分辨率.尤其是良好的鲁棒特性.对顶盖驱动方腔流,在Re数从102到104范围内,亚松弛系数可在0.3~0.8任取,收敛性能良好.
Resumo:
Stolon formation and fragmentation are two vegetative mechanisms by which hydrilla colonies expand. These two mechanisms of spread were studied in ponds located in Lewisville, TX over a two-year period. Stolons were determined to be the predominant mechanism for localized expansion in undisturbed areas. While some fragments were produced, they accounted for only 0.1% of the establishment of rooted plants in new quadrats. Peak production of fragments occurred in October and November, with fragment densities of 0.15 N m-2 d-1. Expansion by stolons occurred between June and November of each year, with higher rates of spread (up to 4.0 cm d-1 radial growth) observed in the second season.
Resumo:
The high-speed combustible gas ignited by a hot gas jet, which is induced by shock focusing, was experimentally investigated. By use of the separation mode of shock tube, the test section of a single shock tube is split into two parts, which provide the high-speed flow of combustible gas and pilot flame of hot gas jet, respectively. In the interface of two parts of test sections the flame of jet was formed and spread to the high-speed combustible gas. Two kinds of the ignitions, 3-D "line-flame ignition" and 2-D "plane-flame ignition", were investigated. In the condition of 3-D "line-flame ignition" of combustion, thicker hot gas jet than pure air jet, was observed in schlieren photos. In the condition of 2-D "plane-flame ignition" of combustion, the delay time of ignition and the angle of flame front in schlieren photos were measured, from which the velocity of flame propagation in the high-speed combustible gas is estimated in the range of 30-90m/s and the delay time of ignition is estimated in the range of 0.12-0.29ms.
Resumo:
In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.