997 resultados para chemical defenses
Resumo:
Lipids are essential constituents of contemporary living cells, serving as structural molecules that are necessary to form membranous compartments. Amphiphilic lipid-like molecules may also have contributed to prebiotic chemical evolution by promoting the synthesis, aggregation and cooperative encapsulation of other biomolecules. The resulting compartments would allow systems of molecules to be maintained that represent microscopic experiments in a natural version of combinatorial chemistry. Here we address these possibilities and describe recent results related to interactions between amphiphiles and other biomolecules during early evolution toward the first living cells.
Resumo:
Analyses of pond water and mud samples show that nitrifying bacteria (including ammonifying bacteria, nitrite bacteria, nitrobacteria and denitrifying bacteria) are in general closely correlated with various physico-chemical factors, ammonifying bacteria are mainly correlated with dissolved oxygen; denitrifying bacteria are inversely correlated with phosphorus; nitrite bacteria are closely correlated with nitrites, nitrobacteria are inversely correlated with ammoniac nitrogen. The nitrifying bacteria are more closely correlated with heterotrophic bacteria. Nitrobacteria are inversely correlated with anaerobic heterotrophic bacteria. The correlation is quite weak between all the nitrite bacteria which indicates that the nitrite bacteria have a controlling and regulating function in water quality and there is no interdependence as each plays a role of its own. The paper also discusses how the superficial soil (pond mud down to 3.5 cm deep) and different layers of the mud affect the biomass of bacteria. The study shows that the top superficial layer (down to 1.5 cm deep) is the major area for decomposing and converting organic matter.