999 resultados para central Tianshan
Resumo:
The origin of the tri-phasic burst pattern, observed in the EMGs of opponent muscles during rapid self-terminated movements, has been controversial. Here we show by computer simulation that the pattern emerges from interactions between a central neural trajectory controller (VITE circuit) and a peripheral neuromuscularforce controller (FLETE circuit). Both neural models have been derived from simple functional constraints that have led to principled explanations of a wide variety of behavioral and neurobiological data, including, as shown here, the generation of tri-phasic bursts.
Resumo:
info:eu-repo/semantics/published
Resumo:
The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.
Resumo:
This dissertation centers on the relationship between art and politics in postwar Central America as materialized in the specific issues of racial and gendered violence that derive from the region's geopolitical location and history. It argues that the decade of the 1990s marks a moment of change in the region's cultural infrastructure, both institutionally and conceptually, in which artists seek a new visual language of experimental art practices to articulate and conceptualize a critical understanding of place, experience and knowledge. It posits that visual and conceptual manifestations of violence in Central American performance, conceptual art and installation extend beyond a critique of the state, and beyond the scope of political parties in perpetuating violent circumstances in these countries. It argues that instead artists use experimental practices in art to locate manifestations of racial violence in an historical system of domination and as a legacy of colonialism still witnessed, lived, and learned by multiple subjectivities in the region. In this postwar period artists move beyond the cold-war rhetoric of the previous decades and instead root the current social and political injustices in what Aníbal Quijano calls the `coloniality of power.' Through an engagement of decolonial methodologies, this dissertation challenges the label "political art" in Central America and offers what I call "visual disobedience" as a response to the coloniality of seeing. I posit that visual colonization is yet another aspect of the coloniality of power and indispensable to projects of decolonization. It offers an analysis of various works to show how visual disobedience responds specifically to racial and gender violence and the equally violent colonization of visuality in Mesoamerica. Such geopolitical critiques through art unmask themes specific to life and identity in contemporary Central America, from indigenous genocide, femicide, transnational gangs, to mass imprisonments and a new wave of social cleansing. I propose that Central American artists--beyond an anti-colonial stance--are engaging in visual disobedience so as to construct decolonial epistemologies in art, through art, and as art as decolonial gestures for healing.
Resumo:
Given a probability distribution on an open book (a metric space obtained by gluing a disjoint union of copies of a half-space along their boundary hyperplanes), we define a precise concept of when the Fréchet mean (barycenter) is sticky. This nonclassical phenomenon is quantified by a law of large numbers (LLN) stating that the empirical mean eventually almost surely lies on the (codimension 1 and hence measure 0) spine that is the glued hyperplane, and a central limit theorem (CLT) stating that the limiting distribution is Gaussian and supported on the spine.We also state versions of the LLN and CLT for the cases where the mean is nonsticky (i.e., not lying on the spine) and partly sticky (i.e., is, on the spine but not sticky). © Institute of Mathematical Statistics, 2013.
Resumo:
T cell activation leads to engagement of cellular metabolic pathways necessary to support cell proliferation and function. However, our understanding of the signal transduction pathways that regulate metabolism and their impact on T cell function remains limited. The liver kinase B1 (LKB1) is a serine/threonine kinase that links cellular metabolism with cell growth and proliferation. In this study, we demonstrate that LKB1 is a critical regulator of T cell development, viability, activation, and metabolism. T cell-specific ablation of the gene that encodes LKB1 resulted in blocked thymocyte development and a reduction in peripheral T cells. LKB1-deficient T cells exhibited defects in cell proliferation and viability and altered glycolytic and lipid metabolism. Interestingly, loss of LKB1 promoted increased T cell activation and inflammatory cytokine production by both CD4(+) and CD8(+) T cells. Activation of the AMP-activated protein kinase (AMPK) was decreased in LKB1-deficient T cells. AMPK was found to mediate a subset of LKB1 functions in T lymphocytes, as mice lacking the α1 subunit of AMPK displayed similar defects in T cell activation, metabolism, and inflammatory cytokine production, but normal T cell development and peripheral T cell homeostasis. LKB1- and AMPKα1-deficient T cells each displayed elevated mammalian target of rapamycin complex 1 signaling and IFN-γ production that could be reversed by rapamycin treatment. Our data highlight a central role for LKB1 in T cell activation, viability, and metabolism and suggest that LKB1-AMPK signaling negatively regulates T cell effector function through regulation of mammalian target of rapamycin activity.
Resumo:
Central pain is an enigmatic, intractable condition, related to destruction of thalamic areas, resulting in likely loss of inhibitory synaptic transmission mediated by GABA. It is proposed that treatment of central pain, a localized process, may be treated by GABA supplementation, like Parkinson's disease and depression. At physiologic pH, GABA exists as a zwitterion that is poorly permeable to the blood brain barrier (BBB). Because the pH of the cerebral spinal fluid (CSF) is acidic relative to the plasma, ion trapping may allow a GABA ester prodrug to accumulate and be hydrolyzed within the CSF. Previous investigations with ester local anesthetics may be applicable to some GABA esters since they are weak bases, hydrolyzed by esterases and cross the BBB. Potential non-toxic GABA esters are discussed. Many GABA esters were investigated in the 1980s and it is hoped that this paper may spark renewed interest in their development.
Resumo:
Phenomenologically, humans effectively label and report feeling distinct emotions, yet the extent to which emotions are represented categorically in nervous system activity is controversial. Theoretical accounts differ in this regard, some positing distinct emotional experiences emerge from a dimensional representation (e.g., along axes of valence and arousal) whereas others propose emotions are natural categories, with dedicated neural bases and associated response profiles. This dissertation aims to empirically assess these theoretical accounts by examining how emotions are represented (either as disjoint categories or as points along continuous dimensions) in autonomic and central nervous system activity by integrating psychophysiological recording and functional neuroimaging with machine-learning based analytical methods. Results demonstrate that experientially, emotional events are well-characterized both along dimensional and categorical frameworks. Measures of central and peripheral responding discriminate among emotion categories, but are largely independent of valence and arousal. These findings suggest dimensional and categorical aspects of emotional experience are driven by separable neural substrates and demonstrate that emotional states can be objectively quantified on the basis of nervous system activity.
Resumo:
Examining how key components of coat protein I (COPI) transport participate in cargo sorting, we find that, instead of ADP ribosylation factor 1 (ARF1), its GTPase-activating protein (GAP) plays a direct role in promoting the binding of cargo proteins by coatomer (the core COPI complex). Activated ARF1 binds selectively to SNARE cargo proteins, with this binding likely to represent at least a mechanism by which activated ARF1 is stabilized on Golgi membrane to propagate its effector functions. We also find that the GAP catalytic activity plays a critical role in the formation of COPI vesicles from Golgi membrane, in contrast to the prevailing view that this activity antagonizes vesicle formation. Together, these findings indicate that GAP plays a central role in coupling cargo sorting and vesicle formation, with implications for simplifying models to describe how these two processes are coupled during COPI transport.
Resumo:
OBJECTIVES: Two factors have been considered important contributors to tooth wear: dietary abrasives in plant foods themselves and mineral particles adhering to ingested food. Each factor limits the functional life of teeth. Cross-population studies of wear rates in a single species living in different habitats may point to the relative contributions of each factor. MATERIALS AND METHODS: We examine macroscopic dental wear in populations of Alouatta palliata (Gray, 1849) from Costa Rica (115 specimens), Panama (19), and Nicaragua (56). The sites differ in mean annual precipitation, with the Panamanian sites receiving more than twice the precipitation of those in Costa Rica or Nicaragua (∼3,500 mm vs. ∼1,500 mm). Additionally, many of the Nicaraguan specimens were collected downwind of active plinian volcanoes. Molar wear is expressed as the ratio of exposed dentin area to tooth area; premolar wear was scored using a ranking system. RESULTS: Despite substantial variation in environmental variables and the added presence of ash in some environments, molar wear rates do not differ significantly among the populations. Premolar wear, however, is greater in individuals collected downwind from active volcanoes compared with those living in environments that did not experience ash-fall. DISCUSSION: Volcanic ash seems to be an important contributor to anterior tooth wear but less so in molar wear. That wear is not found uniformly across the tooth row may be related to malformation in the premolars due to fluorosis. A surge of fluoride accompanying the volcanic ash may differentially affect the premolars as the molars fully mineralize early in the life of Alouatta.
Physical Activity, Central Adiposity, and Functional Limitations in Community-Dwelling Older Adults.
Resumo:
BACKGROUND AND PURPOSE: Obesity and physical inactivity are independently associated with physical and functional limitations in older adults. The current study examines the impact of physical activity on odds of physical and functional limitations in older adults with central and general obesity. METHODS: Data from 6279 community-dwelling adults aged 60 years or more from the Health and Retirement Study 2006 and 2008 waves were used to calculate prevalence and odds of physical and functional limitation among obese older adults with high waist circumference (waist circumference ≥88 cm in females and ≥102 cm in males) who were physically active versus inactive (engaging in moderate/vigorous activity less than once per week). Logistic regression models were adjusted for age, sex, race/ethnicity, education, smoking status, body mass index, and number of comorbidities. RESULTS: Physical activity was associated with lower odds of physical and functional limitations among older adults with high waist circumference (odds ratio [OR], 0.59; confidence interval [CI], 0.52-0.68, for physical limitations; OR, 0.52; CI, 0.44-0.62, for activities of daily living; and OR, 0.44; CI, 0.39-0.50, for instrumental activities of daily living). CONCLUSIONS: Physical activity is associated with significantly lower odds of physical and functional limitations in obese older adults regardless of how obesity is classified. Additional research is needed to determine whether physical activity moderates long-term physical and functional limitations.
Resumo:
UNLABELLED: The human fungal pathogen Cryptococcus neoformans is capable of infecting a broad range of hosts, from invertebrates like amoebas and nematodes to standard vertebrate models such as mice and rabbits. Here we have taken advantage of a zebrafish model to investigate host-pathogen interactions of Cryptococcus with the zebrafish innate immune system, which shares a highly conserved framework with that of mammals. Through live-imaging observations and genetic knockdown, we establish that macrophages are the primary immune cells responsible for responding to and containing acute cryptococcal infections. By interrogating survival and cryptococcal burden following infection with a panel of Cryptococcus mutants, we find that virulence factors initially identified as important in causing disease in mice are also necessary for pathogenesis in zebrafish larvae. Live imaging of the cranial blood vessels of infected larvae reveals that C. neoformans is able to penetrate the zebrafish brain following intravenous infection. By studying a C. neoformans FNX1 gene mutant, we find that blood-brain barrier invasion is dependent on a known cryptococcal invasion-promoting pathway previously identified in a murine model of central nervous system invasion. The zebrafish-C. neoformans platform provides a visually and genetically accessible vertebrate model system for cryptococcal pathogenesis with many of the advantages of small invertebrates. This model is well suited for higher-throughput screening of mutants, mechanistic dissection of cryptococcal pathogenesis in live animals, and use in the evaluation of therapeutic agents. IMPORTANCE: Cryptococcus neoformans is an important opportunistic pathogen that is estimated to be responsible for more than 600,000 deaths worldwide annually. Existing mammalian models of cryptococcal pathogenesis are costly, and the analysis of important pathogenic processes such as meningitis is laborious and remains a challenge to visualize. Conversely, although invertebrate models of cryptococcal infection allow high-throughput assays, they fail to replicate the anatomical complexity found in vertebrates and, specifically, cryptococcal stages of disease. Here we have utilized larval zebrafish as a platform that overcomes many of these limitations. We demonstrate that the pathogenesis of C. neoformans infection in zebrafish involves factors identical to those in mammalian and invertebrate infections. We then utilize the live-imaging capacity of zebrafish larvae to follow the progression of cryptococcal infection in real time and establish a relevant model of the critical central nervous system infection phase of disease in a nonmammalian model.