889 resultados para call data, paradata, CATI, calling time, call scheduler, random assignment
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: The National Do Not Call List
Resumo:
IDALS stands for Iowa Department of Agriculture and Land Stewardship. IDALS’s mission is to provide leadership for all aspects of agriculture in Iowa, ensure consumer protection and promote the responsible use of our natural resources. DSC stands for the Division of Soil Conservation and is the division within IDALS responsible for state leadership in the protection and management of soil, water and mineral resources. Learn more about IDALS at www.iowaagriculture.gov
A filtering method to correct time-lapse 3D ERT data and improve imaging of natural aquifer dynamics
Resumo:
We have developed a processing methodology that allows crosshole ERT (electrical resistivity tomography) monitoring data to be used to derive temporal fluctuations of groundwater electrical resistivity and thereby characterize the dynamics of groundwater in a gravel aquifer as it is infiltrated by river water. Temporal variations of the raw ERT apparent-resistivity data were mainly sensitive to the resistivity (salinity), temperature and height of the groundwater, with the relative contributions of these effects depending on the time and the electrode configuration. To resolve the changes in groundwater resistivity, we first expressed fluctuations of temperature-detrended apparent-resistivity data as linear superpositions of (i) time series of riverwater-resistivity variations convolved with suitable filter functions and (ii) linear and quadratic representations of river-water-height variations multiplied by appropriate sensitivity factors; river-water height was determined to be a reliable proxy for groundwater height. Individual filter functions and sensitivity factors were obtained for each electrode configuration via deconvolution using a one month calibration period and then the predicted contributions related to changes in water height were removed prior to inversion of the temperature-detrended apparent-resistivity data. Applications of the filter functions and sensitivity factors accurately predicted the apparent-resistivity variations (the correlation coefficient was 0.98). Furthermore, the filtered ERT monitoring data and resultant time-lapse resistivity models correlated closely with independently measured groundwater electrical resistivity monitoring data and only weakly with the groundwater-height fluctuations. The inversion results based on the filtered ERT data also showed significantly less inversion artefacts than the raw data inversions. We observed resistivity increases of up to 10% and the arrival time peaks in the time-lapse resistivity models matched those in the groundwater resistivity monitoring data.
Resumo:
L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Mounting Mortgage Payments? Call the Iowa Mortgage Help Hotline!
Resumo:
Time-lapse geophysical measurements are widely used to monitor the movement of water and solutes through the subsurface. Yet commonly used deterministic least squares inversions typically suffer from relatively poor mass recovery, spread overestimation, and limited ability to appropriately estimate nonlinear model uncertainty. We describe herein a novel inversion methodology designed to reconstruct the three-dimensional distribution of a tracer anomaly from geophysical data and provide consistent uncertainty estimates using Markov chain Monte Carlo simulation. Posterior sampling is made tractable by using a lower-dimensional model space related both to the Legendre moments of the plume and to predefined morphological constraints. Benchmark results using cross-hole ground-penetrating radar travel times measurements during two synthetic water tracer application experiments involving increasingly complex plume geometries show that the proposed method not only conserves mass but also provides better estimates of plume morphology and posterior model uncertainty than deterministic inversion results.
Resumo:
We study theoretical and empirical aspects of the mean exit time (MET) of financial time series. The theoretical modeling is done within the framework of continuous time random walk. We empirically verify that the mean exit time follows a quadratic scaling law and it has associated a prefactor which is specific to the analyzed stock. We perform a series of statistical tests to determine which kind of correlation are responsible for this specificity. The main contribution is associated with the autocorrelation property of stock returns. We introduce and solve analytically both two-state and three-state Markov chain models. The analytical results obtained with the two-state Markov chain model allows us to obtain a data collapse of the 20 measured MET profiles in a single master curve.
Resumo:
BACKGROUND: While the assessment of analytical precision within medical laboratories has received much attention in scientific enquiry, the degree of as well as the sources causing variation between them remains incompletely understood. In this study, we quantified the variance components when performing coagulation tests with identical analytical platforms in different laboratories and computed intraclass correlations coefficients (ICC) for each coagulation test. METHODS: Data from eight laboratories measuring fibrinogen twice in twenty healthy subjects with one out of 3 different platforms and single measurements of prothrombin time (PT), and coagulation factors II, V, VII, VIII, IX, X, XI and XIII were analysed. By platform, the variance components of (i) the subjects, (ii) the laboratory and the technician and (iii) the total variance were obtained for fibrinogen as well as (i) and (iii) for the remaining factors using ANOVA. RESULTS: The variability for fibrinogen measurements within a laboratory ranged from 0.02 to 0.04, the variability between laboratories ranged from 0.006 to 0.097. The ICC for fibrinogen ranged from 0.37 to 0.66 and from 0.19 to 0.80 for PT between the platforms. For the remaining factors the ICC's ranged from 0.04 (FII) to 0.93 (FVIII). CONCLUSIONS: Variance components that could be attributed to technicians or laboratory procedures were substantial, led to disappointingly low intraclass correlation coefficients for several factors and were pronounced for some of the platforms. Our findings call for sustained efforts to raise the level of standardization of structures and procedures involved in the quantification of coagulation factors.
Resumo:
OBJECTIVE: We sought to study the epidemiologic and medical aspects of alpine helicopter rescue operations involving the winching of an emergency physician to the victim. METHODS: We retrospectively reviewed the medical and operational reports of a single helicopter-based emergency medical service. Data from 1 January 2003 to 31 December 2008 were analysed. RESULTS: A total of 921 patients were identified, with a male:female ratio of 2:1. There were 56 (6%) patients aged 15 or under. The median time from emergency call to helicopter take-off was 7 min (IQR = 5-10 min). 840 (91%) patients suffered from trauma-related injuries, with falls from heights during sports activities the most frequent event. The most common injuries involved the legs (246 or 27%), head (175 or 19%), upper limbs (117 or 13%), spine (108 or 12%), and femur (66 or 7%). Only 81 (9%) victims suffered from a medical emergency, but these cases were, when compared to the trauma victims, significantly more severe according to the NACA index (p<0.001). Overall, 246 (27%) patients had a severe injury or illness, namely, a potential or overt vital threat (NACA score between 4 and 6). A total of 478 (52%) patients required administration of major analgesics: fentanyl (443 patients or 48%), ketamine (42 patients or 5%) or morphine (7 patients or 1%). The mean dose of fentanyl was 188 micrograms (range 25-750, SD 127). Major medical interventions such as administration of vasoactive drugs, intravenous perfusions of more than 1000 ml of fluids, ventilation or intubation were performed on 39 (4%) patients. CONCLUSIONS: The severity of the patients' injuries or illnesses along with the high proportion of medical procedures performed directly on-site validates emergency physician winching for advanced life support procedures and analgesia.
Resumo:
Geophysical methods have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, time-lapse geophysical data, when coupled with a hydrological model and inverted stochastically, may allow for the effective estimation of subsurface hydraulic parameters and their corresponding uncertainties. In this study, we use a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach to investigate how much information regarding vadose zone hydraulic properties can be retrieved from time-lapse crosshole GPR data collected at the Arrenaes field site in Denmark during a forced infiltration experiment.
Resumo:
Background/Purpose: Since the end of 2009, an ultrasound scoring call SONAR has been implemented for RA patients as a routine tool in the SCQM registry (Swiss Clinical Quality Management registry for rheumatic diseases). A cross-sectional evaluation of patients with active disease and clinical remission according to the DAS28ESR and the novel ACR/EULAR remission criteria from 2010 clearly indicated a good correlational external validity of synovial pathologies with clinical disease activity in RA (2012 EULAR meeting. Objective: of this study was to evaluate the sensitivity to change of B-mode and Power-Doppler scores in a longitudinal perspective along with the changes in DAS28ESR in two consecutive visits among the patients included in the SCQM registry Methods: All patients who had at least two SONAR scores and simultaneous DAS28ESR evaluations between December 2009 and June 2012 were included in this study. The data came from 20 different operators working mostly in hospitals but also in private practices, who had received a previous teaching over 3 days in a reference center. The SONAR score includes a semi-quantitative B mode and Power-Doppler evaluation of 22 joints from 0 to 3, maximum 66 points for each score. The selection of these 22 joints was done in analogy to a 28 joint count and further restricted to joint regions with published standard ultrasound images. Both elbows and wrist joints were dynamically scanned from the dorsal and the knee joints from a longitudinal suprapatellar view in flexion and in joint extension. The bilateral evaluation of the second to fifth metacarpophalangeal and proximal interphalangeal joints was done from a palmar view in full extension, and the Power-Doppler scoring from a dorsal view with hand and finger position in best relaxation. Results: From the 657 RA patients with at least one score performed, 128 RA patients with 2 or more consultations of DAS28ESR, and a complete SONAR data set could be included. The mean (SD) time between the two evaluations was 9.6 months (54). The mean (SD) DAS28ESR was: 3.5 (1.3) at the first visit and was significantly lower (mean 3.0, SD.2.0, p:_0.0001) at the second visit. The mean (SD) of the total B mode was 12 (9.5) at baseline and 9.6 (7.6) at follow-up (p_0.0004). The Power-Doppler score at entry was 2.9 (5.7) and 1.9 (3.6), at the second visit, p _0.0001. The Pearson r correlation between change in DAS28ESR and the B mode was 0.44 (95% CI: 0.29, 0.57, p_ 0.0001),and 0.35 (95% CI: 0.16, 0.50, p _ 0.0002) for the Power-Doppler score,. Clinical relevant change in DAS (_1.1) was associated with a change of total B mode score _3 in 23/32 patients and a change a Doppler score _0.5 in 19/26. Conclusion: This study confirms that the SONAR score is sensitive to change and provides a complementary method of assessing RA disease activity to the DAS that could be very useful in daily practice.
Resumo:
Aim Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location Europe. Methods We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.
Resumo:
Statistics on the occurrence of various frog and toad species across the state, as reported by volunteers in the annual spring survey of Iowa wetlands.