962 resultados para boundary integral equation method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrocardiography (ECG) QT interval is influenced by fluctuations in heart rate (HR) what may lead to misinterpretation of its length. Considering that alterations in QT interval length reflect abnormalities of the ventricular repolarisation which predispose to occurrence of arrhythmias, this variable must be properly evaluated. The aim of this work is to determine which method of correcting the QT interval is the most appropriate for dogs regarding different ranges of normal HR (different breeds). Healthy adult dogs (n=130; German Shepherd, Boxer, Pit Bull Terrier, and Poodle) were submitted to ECG examination and QT intervals were determined in triplicates from the bipolar limb II lead and corrected for the effects of HR through the application of three published formulae involving quadratic, cubic or linear regression. The mean corrected QT values (QTc) obtained using the diverse formulae were significantly different (ρ<0.05), while those derived according to the equation QTcV = QT + 0.087(1- RR) were the most consistent (linear regression). QTcV values were strongly correlated (r=0.83) with the QT interval and showed a coefficient of variation of 8.37% and a 95% confidence interval of 0.22-0.23 s. Owing to its simplicity and reliability, the QTcV was considered the most appropriate to be used for the correction of QT interval in dogs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By coupling the Boundary Element Method (BEM) and the Finite Element Method (FEM) an algorithm that combines the advantages of both numerical processes is developed. The main aim of the work concerns the time domain analysis of general three-dimensional wave propagation problems in elastic media. In addition, mathematical and numerical aspects of the related BE-, FE- and BE/FE-formulations are discussed. The coupling algorithm allows investigations of elastodynamic problems with a BE- and a FE-subdomain. In order to observe the performance of the coupling algorithm two problems are solved and their results compared to other numerical solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the use of the conjugate gradient method of function estimation for the simultaneous identification of two unknown boundary heat fluxes in parallel plate channels. The fluid flow is assumed to be laminar and hydrodynamically developed. Temperature measurements taken inside the channel are used in the inverse analysis. The accuracy of the present solution approach is examined by using simulated measurements containing random errors, for strict cases involving functional forms with discontinuities and sharp-corners for the unknown functions. Three different types of inverse problems are addressed in the paper, involving the estimation of: (i) Spatially dependent heat fluxes; (ii) Time-dependent heat fluxes; and (iii) Time and spatially dependent heat fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present an algorithm for the numerical simulation of the cavitation in the hydrodynamic lubrication of journal bearings. Despite the fact that this physical process is usually modelled as a free boundary problem, we adopted the equivalent variational inequality formulation. We propose a two-level iterative algorithm, where the outer iteration is associated to the penalty method, used to transform the variational inequality into a variational equation, and the inner iteration is associated to the conjugate gradient method, used to solve the linear system generated by applying the finite element method to the variational equation. This inner part was implemented using the element by element strategy, which is easily parallelized. We analyse the behavior of two physical parameters and discuss some numerical results. Also, we analyse some results related to the performance of a parallel implementation of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work shows how thick boundary layers can be produced in a short wind tunnel with a view to simulate atmospheric flows. Several types of thickening devices are analysed. The experimental assessment of the devices was conducted by considering integral properties of the flow and the spectra: skin-friction, mean velocity profiles in inner and outer co-ordinates and longitudinal turbulence. Designs based on screens, elliptic wedge generators, and cylindrical rod generators are analysed. The paper describes in detail the experimental arrangement, including the features of the wind tunnel and of the instrumentation. The results are compared with experimental data published by other authors and with naturally developed flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulation of plasma sources is very important. Such models allows to vary different plasma parameters with high degree of accuracy. Moreover, they allow to conduct measurements not disturbing system balance.Recently, the scientific and practical interest increased in so-called two-chamber plasma sources. In one of them (small or discharge chamber) an external power source is embedded. In that chamber plasma forms. In another (large or diffusion chamber) plasma exists due to the transport of particles and energy through the boundary between chambers.In this particular work two-chamber plasma sources with argon and oxygen as active mediums were onstructed. This models give interesting results in electric field profiles and, as a consequence, in density profiles of charged particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of the present study were to describe and compare the body composition variables determined by bioelectrical impedance (BIA) and the deuterium dilution method (DDM), to identify possible correlations and agreement between the two methods, and to construct a linear regression model including anthropometric measures. Obese adolescents were evaluated by anthropometric measures, and body composition was assessed by BIA and DDM. Forty obese adolescents were included in the study. Comparison of the mean values for the following variables: fat body mass (FM; kg), fat-free mass (FFM; kg), and total body water (TBW; %) determined by DDM and by BIA revealed significant differences. BIA overestimated FFM and TBW and underestimated FM. When compared with data provided by DDM, the BIA data presented a significant correlation with FFM (r = 0.89; P < 0.001), FM (r = 0.93; P < 0.001) and TBW (r = 0.62; P < 0.001). The Bland-Altman plot showed no agreement for FFM, FM or TBW between data provided by BIA and DDM. The linear regression models proposed in our study with respect to FFM, FM, and TBW were well adjusted. FFM obtained by DDM = 0.842 x FFM obtained by BIA. FM obtained by DDM = 0.855 x FM obtained by BIA + 0.152 x weight (kg). TBW obtained by DDM = 0.813 x TBW obtained by BIA. The body composition results of obese adolescents determined by DDM can be predicted by using the measures provided by BIA through a regression equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generalized maximum likelihood method was used to determine binary interaction parameters between carbon dioxide and components of orange essential oil. Vapor-liquid equilibrium was modeled with Peng-Robinson and Soave-Redlich-Kwong equations, using a methodology proposed in 1979 by Asselineau, Bogdanic and Vidal. Experimental vapor-liquid equilibrium data on binary mixtures formed with carbon dioxide and compounds usually found in orange essential oil were used to test the model. These systems were chosen to demonstrate that the maximum likelihood method produces binary interaction parameters for cubic equations of state capable of satisfactorily describing phase equilibrium, even for a binary such as ethanol/CO2. Results corroborate that the Peng-Robinson, as well as the Soave-Redlich-Kwong, equation can be used to describe phase equilibrium for the following systems: components of essential oil of orange/CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractThis study aimed to evaluate the effect of the distillation time and the sample mass on the total SO2 content in integral passion fruit juice (Passiflora sp). For the SO2 analysis, a modified version of the Monier-Williams method was used. In this experiment, the distillation time and the sample mass were reduced to half of the values proposed in the original method. The analyses were performed in triplicate for each distilling time x sample mass binomial, making a total of 12 tests, which were performed on the same day. The significance of the effects of the different distillation times and sample mass were evaluated by applying one-factor analysis of variance (ANOVA). For a 95% confidence limit, it was found that the proposed amendments to the distillation time, sample mass, and the interaction between distilling time x sample mass were not significant (p > 0.05) in determining the SO2 content in passion fruit juice. In view of the results that were obtained it was concluded that for integral passion fruit juice it was possible to reduce the distillation time and the sample mass in determining the SO2 content by the Monier-Williams method without affecting the result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (M. Sc.) - Brock University, 1978.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four problems of physical interest have been solved in this thesis using the path integral formalism. Using the trigonometric expansion method of Burton and de Borde (1955), we found the kernel for two interacting one dimensional oscillators• The result is the same as one would obtain using a normal coordinate transformation, We next introduced the method of Papadopolous (1969), which is a systematic perturbation type method specifically geared to finding the partition function Z, or equivalently, the Helmholtz free energy F, of a system of interacting oscillators. We applied this method to the next three problems considered• First, by summing the perturbation expansion, we found F for a system of N interacting Einstein oscillators^ The result obtained is the same as the usual result obtained by Shukla and Muller (1972) • Next, we found F to 0(Xi)f where A is the usual Tan Hove ordering parameter* The results obtained are the same as those of Shukla and Oowley (1971), who have used a diagrammatic procedure, and did the necessary sums in Fourier space* We performed the work in temperature space• Finally, slightly modifying the method of Papadopolous, we found the finite temperature expressions for the Debyecaller factor in Bravais lattices, to 0(AZ) and u(/K/ j,where K is the scattering vector* The high temperature limit of the expressions obtained here, are in complete agreement with the classical results of Maradudin and Flinn (1963) .