911 resultados para biomimetic inspiration
Resumo:
Alverata: a typeface design for Europe This typeface is a response to the extraordinarily diverse forms of letters of the Latin alphabet in manuscripts and inscriptions in the Romanesque period (c. 1000–1200). While the Romanesque did provide inspiration for architectural lettering in the nineteenth century, these letterforms have not until now been systematically considered and redrawn as a working typeface. The defining characteristic of the Romanesque letterform is variety: within an individual inscription or written text, letters such as A, C, E and G might appear with different forms at each appearance. Some of these forms relate to earlier Roman inscriptional forms and are therefore familiar to us, but others are highly geometric and resemble insular and uncial forms. The research underlying the typeface involved the collection of a large number of references for lettering of this period, from library research and direct on-site ivestigation. This investigation traced the wide dispersal of the Romanesque lettering tradition across the whole of Europe. The variety of letter widths and weights encountered, as well as variant shapes for individual letters, offered both direct models and stylistic inspiration for the characters and for the widths and weight variants of the typeface. The ability of the OpenType format to handle multiple stylistic variants of any one character has been exploited to reflect the multiplicity of forms available to stonecutters and scribes of the period. To make a typeface that functions in a contemporary environment, a lower case has been added, and formal and informal variants supported. The pan-European nature of the Romanesque design tradition has inspired an pan-European approach to the character set of the typeface, allowing for text composition in all European languages, and the typeface has been extended into Greek and Cyrillic, so that the broadest representation of European languages can be achieved.
Resumo:
The societal need for reliable climate predictions and a proper assessment of their uncertainties is pressing. Uncertainties arise not only from initial conditions and forcing scenarios, but also from model formulation. Here, we identify and document three broad classes of problems, each representing what we regard to be an outstanding challenge in the area of mathematics applied to the climate system. First, there is the problem of the development and evaluation of simple physically based models of the global climate. Second, there is the problem of the development and evaluation of the components of complex models such as general circulation models. Third, there is the problem of the development and evaluation of appropriate statistical frameworks. We discuss these problems in turn, emphasizing the recent progress made by the papers presented in this Theme Issue. Many pressing challenges in climate science require closer collaboration between climate scientists, mathematicians and statisticians. We hope the papers contained in this Theme Issue will act as inspiration for such collaborations and for setting future research directions.
Resumo:
The development of versatile bioactive surfaces able to emulate in vivo conditions is of enormous importance to the future of cell and tissue therapy. Tuning cell behaviour on two-dimensional surfaces so that the cells perform as if they were in a natural three-dimensional tissue represents a significant challenge, but one that must be met if the early promise of cell and tissue therapy is to be fully realised. Due to the inherent complexities involved in the manufacture of biomimetic three-dimensional substrates, the scaling up of engineered tissue-based therapies may be simpler if based upon proven two-dimensional culture systems. In this work, we developed new coating materials composed of the self-assembling peptide amphiphiles (PAs) C16G3RGD (RGD) and C16G3RGDS (RGDS) shown to control cell adhesion and tissue architecture while avoiding the use of serum. When mixed with the C16ETTES diluent PA at 13 : 87 (mol mol-1) ratio at 1.25 times 10-3 M, the bioactive {PAs} were shown to support optimal adhesion, maximal proliferation, and prolonged viability of human corneal stromal fibroblasts ({hCSFs)}, while improving the cell phenotype. These {PAs} also provided stable adhesive coatings on highly-hydrophobic surfaces composed of striated polytetrafluoroethylene ({PTFE)}, significantly enhancing proliferation of aligned cells and increasing the complexity of the produced tissue. The thickness and structure of this highly-organised tissue were similar to those observed in vivo, comprising aligned newly-deposited extracellular matrix. As such, the developed coatings can constitute a versatile biomaterial for applications in cell biology, tissue engineering, and regenerative medicine requiring serum-free conditions.
Resumo:
Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P = 0.05) and this improved further with addition of collagen IV (P = 0.01). Oxidised gels presented larger internal pores (diameter: 0.2 - 0.8 microm) than unmodified gels (pore diameter: 0.05 - 0.1 microm) and were significantly less stiff (P = 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.
Resumo:
This note presents the special issue on Experimental and Behavioral Economics. The volume includes some recent contributions from these correlated disciplines –empirical the former and theoretical the latter– and their potential contribution to the intersection of Economics with Psychology and Sociology. The project “El papel de la comparación social en las decisiones económicas bajo incertidumbre” (Junta de Andalucía, P07-SEJ-03155)” provided us with inspiration and financial support to publish this volume.
Resumo:
The incorporation of small bioactive peptide motifs within robust hydrogels constitutes a facile procedure to chemically functionalise cell and tissue scaffolds. In this study, a novel approach to utilise Fmoc-linked peptide amphiphiles comprising the bio-functional cell-adhesion RGDS motif within biomimetic collagen gels was developed. The composite scaffolds thus created were shown to maintain the mechanical properties of the collagen gel while presenting additional bio-activity. In particular, these materials enhanced the adhesion and proliferation of viable human corneal stromal fibroblasts by 300% compared to nonfunctionalised gels. Furthermore, the incorporation of Fmoc-RGDS nanostructures within the collagen matrix significantly suppressed gel shrinkage resulting from the contractile action of encapsulated fibroblasts once activated by serum proteins. These mechanical and biological properties demonstrate that the incorporation of peptide amphiphiles provides a suitable and easy method to circumvent specific biomaterial limitations, such as cell-derived shrinkage, for improved performance in tissue engineering and regenerative medicine applications.
Resumo:
Protons and electrons are being exploited in different natural charge transfer processes. Both types of charge carriers could be, therefore, responsible for charge transport in biomimetic self-assembled peptide nanostructures. The relative contribution of each type of charge carrier is studied in the present work for fi brils self-assembled from amyloid- β derived peptide molecules, in which two non-natural thiophene-based amino acids are included. It is shown that under low humidity conditions both electrons and protons contribute to the conduction, with current ratio of 1:2 respectively, while at higher relative humidity proton transport dominates the conductance. This hybrid conduction behavior leads to a bimodal exponential dependence of the conductance on the relative humidity. Furthermore, in both cases the conductance is shown to be affected by the peptide folding state under the entire relative humidity range. This unique hybrid conductivity behavior makes self-assembled peptide nanostructures powerful building blocks for the construction of electric devices that could use either or both types of charge carriers for their function.
Resumo:
The work on the Iron Age site at Sutton Common, South Yorkshire, UK, has provided both inspiration and a testing ground for the development of English Heritage's strategy for wetlands. This paper concentrates on the non-technical aspects of the developing conservation management of the site, which includes in situ preservation of selected waterlogged remains, and summarises the main results of the Monuments at Risk in England's Wetlands project, the new strategy for which it formed the basis
Resumo:
This article analyzes two series of photographs and essays on writers’ rooms published in England and Canada in 2007 and 2008. The Guardian’s Writers Rooms series, with photographs by Eamon McCabe, ran in 2007. In the summer of 2008, The Vancouver International Writers and Readers Festival began to post its own version of The Guardian column on its website by displaying, each week leading up to the Festival in September, a different writer’s “writing space” and an accompanying paragraph. I argue that these images of writers’ rooms, which suggest a cultural fascination with authors’ private compositional practices and materials, reveal a great deal about theoretical constructions of authorship implicit in contemporary literary culture. Far from possessing the museum quality of dead authors’ spaces, rooms that are still being used, incorporating new forms of writing technology, and having drafts of manuscripts scattered around them, can offer insight into such well-worn and ineffable areas of speculation as inspiration, singular authorial genius, and literary productivity.
Resumo:
This article examines medieval interpretations of the Song of Songs and their appearance in the correspondence of one of the greatest popes of the High Middle Ages: Innocent III (1198-1216). Innocent III’s depiction of heretics in the south of France as ‘the little foxes which destroy the vineyard of the Lord of Hosts’ was not unprecedented: decades earlier Saint Bernard of Clairvaux had also likened the ‘little foxes’ to heretics in his sermons. Bernard’s renown both as mystical theologian and tireless political advocate of the papacy meant that Innocent is likely to have drawn on such sermons for inspiration when composing his correspondence to the Christian faithful. Innocent’s references to the Song of Songs also provide conclusive evidence that a significant number of his letters have a highly personal flavour and that we really can discern a pope’s own ‘voice’ through his correspondence.
Resumo:
With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention. Taking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks.
Resumo:
Formal conceptions of the rule of law are popular among contemporary legal philosophers. Nonetheless, the coherence of accounts of the rule of law committed to these conceptions is sometimes fractured by elements harkening back to substantive conceptions of the rule of law. I suggest that this may be because at its origins the ideal of the rule of law was substantive through and through. I also argue that those origins are older than is generally supposed. Most authors tend to trace the ideas of the rule of law and natural law back to classical Greece, but I show that they are already recognisable and intertwined as far back as Homer. Because the founding moment of the tradition of western intellectual reflection on the rule of law placed concerns about substantive justice at the centre of the rule of law ideal, it may be hard for this ideal to entirely shrug off its substantive content. It may be undesirable, too, given the rhetorical power of appeals to the rule of law. The rule of law means something quite radical in Homer; this meaning may provide a source of normative inspiration for contemporary reflections about the rule of law.
Resumo:
The human body occupies a central place in Rukeyser’s poetry. Her characters’ physical experiences inspire their search for an artistic form and a holistic vision that reconciles the corporeal and conceptual aspects of their life. My thesis deals with Rukeyser’s reconciliation of disparate aspects of existence through the image of the human body and the practical experiences she underwent in her personal life and incorporated in her poetry. I discuss her poetry of the 1940s, where a tension is observed between the artist’s personal life and her art, which she attempts to resolve by adopting an artistic form that accommodates her quotidian experiences. I study, mainly through her poetry of the 1950s, Rukeyser’s poetic technique in the light of her organicist poetics and the combination of tendencies to coercion and suggestiveness distinguishing her style. I examine her portrayal of the suffering body in her poetry of the 1960s and 1970s. By means of their physical experiences, the ill, her despised and the imprisoned protagonists undergo a process of development whereby they perceive the different aspects of their identity and attempt to broaden perspectives on their situation by reconciling them. I argue that Rukeyser’s engagement with physical encounters and with the poem as an inclusive, organic body enables her to reconcile disparate elements in her poetry, such as her personal life and her art, her individual existence and the public world, as well as the distinct aspects of her characters’ identity. Her vatic outlook, which integrates distinct aspects of experience, is consistent with Merleau-Ponty’s idea of human perception as characterised by the two interdependent positions of immanence and transcendence. Rukeyser’s poetry depicts her physical engagement with quotidian events of her life as a factor of artistic inspiration. These situations constitute shared human experiences that enable her to imagine the links binding her to other people and the world at large. The poet’s personal experiences inspire her search for an artistic form that accommodates them. Her perception of the concrete aspect of her individual existence gains significance when it is linked to social and political issues. Both the private and public are thus seen as interconnected, and they affect the existence of each other while retaining their distinctness.
Resumo:
Chitosan, which is a non-toxic, biodegradable and biocompatible biopolymer, has been widely researched for several applications in the field of biomaterials. Calcium phosphate ceramics stand out among the so-called bioceramics for their absence of local or systemic toxicity, their non-response to foreign bodies or inflammations, and their apparent ability to bond to the host tissue. Hydroxyapatite (HA) is one of the most important bioceramics because it is the main component of the mineral phase of bone. The aim of this work was to produce chitosan membranes coated with hydroxyapatite using the modified biomimetic method. Membranes were synthesized from a solution containing 2% of chitosan in acetic acid (weight/volume) via the solvent evaporation method. Specimens were immersed in a sodium silicate solution and then in a 1.5 SBF (simulated body fluid) solution. The crystallinity of the HA formed over the membranes was correlated to the use of the nucleation agent (the sodium silicate solution itself). Coated membranes were characterized by means of scanning electron microscopy - SEM, X-ray diffraction - XRD, and Fourier transform infrared spectroscopy - FTIR. The results indicate a homogeneous coating covering the entire surface of the membrane and the production of a semi-crystalline hydroxyapatite layer similar to the mineral phase of human bone. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Biocomposites with two different fillers, garlic and wheat bran, were studied. They were based on cassava starch and contained glycerol as a plasticizer and potassium sorbate as an antimicrobial agent and were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and infrared spectroscopy (IR). The mechanical performance at room and lower temperatures was also studied. SEM micrographies of fractured surfaces of the wheat bran composite films showed some ruptured particles of fiber while fibrils of garlic on the order of nanometers were observed when garlic composite films were studied. Mechanical tests, at room temperature, showed that the addition of wheat bran led to an increment in the storage modulus (E`) and hardening and a decrease in Tan delta, while the garlic composite showed a diminishing in the E` and hardening and did not produce significant changes in Tan delta values when compared with systems without fillers (matrix). In the range between -90 degrees C and 20 degrees C. all the materials studied presented two peaks in the Tan delta curve. In the case of the wheat bran composite, both relaxation peaks shifted slightly to higher temperatures, broadened and diminished their intensity when compared with those of the matrix; however garlic composite showed a similar behavior to the matrix. DSC thermograms of aqueous systems showed a slight shift of gelatinization temperature (T(gelatinization)) to higher values when the fillers were present. Thermograms of films showed that both, garlic and wheat bran composites, had a lower melting point than the matrix. IR data indicated that interaction between starch and fillers determined an increase in the availability of hydroxyl groups to be involved in a dynamic exchange with water. (C) 2010 Elsevier B.V. All rights reserved.