998 resultados para bi-disperse media
Resumo:
La imagen corporal (IC) representa la forma en la que un individuo se percibe, imagina, siente y actúa respecto a su propio cuerpo. Es un concepto dinámico que puede modificarse a lo largo de la vida. La percepción de nuestro propio cuerpo está influida por factores socioculturales. Desde el punto de vista histórico, el concepto de belleza se ha modificado sustancialmente. En la prehistoria, la belleza se asociaba a la reproducción de la especie, mientras que en la actualidad, se asocia al éxito personal, profesional y social. El estereotipo de belleza femenino de las sociedades contemporáneas se basa en la extrema delgadez y el masculino en cuerpos musculados. La lucha por alcanzar el canon de belleza impuesto por la sociedad ha contribuido a la aparición de diferentes trastornos de la imagen corporal (TIC). Los medios de comunicación son un factor importante en el desarrollo de determinados procesos patológicos, en la insatisfacción con la propia IC y en la estigmatización del individuo. Se consideran los principales impulsores de los patrones estéticos, siendo las mujeres y los adolescentes los más vulnerables. Las diferentes investigaciones indican que los TIC son frecuentes siendo los trastornos de la conducta alimentaria (TCA) los que suponen un mayor número de ingresos y reingresos entre la población femenina. Aunque los TCA afectan principalmente a la población adolescente, los estudios muestran que puede aparecer en la edad adulta e incluso en la infancia. En el sexo masculino, el trastorno dismórfico corporal (TDC) parece ser el más prevalente. La prevención y el tratamiento de este tipo de trastornos es primordial. En este sentido, enfermería tiene un papel fundamental debido al frecuente contacto que mantiene con el paciente. Debido a la importancia concedida en la sociedad actual a la apariencia física y las posibles repercusiones que ello conlleva, el presente trabajo pretende realizar una revisión de la literatura con el objetivo de analizar el valor y la exigencia que otorga la sociedad a la IC. Palabras clave: imagen corporal, desórdenes mentales, estigma social, medios de comunicación, epidemiología, cuidados de enfermería, proceso de atención de enfermería.
Resumo:
Objetivo: Determinar taxas de definição diagnóstica e complicações da biópsia percutânea guiada por tomografia computadorizada (TC) de lesões ósseas suspeitas de malignidade. Materiais e Métodos: Estudo retrospectivo que incluiu 186 casos de biópsia percutânea guiada por TC de lesões ósseas no período de janeiro de 2010 a dezembro de 2012. Todas as amostras foram obtidas usando agulhas de 8 a 10 gauge. Foram coletados dados demográficos, história de neoplasia maligna prévia, dados relacionados à lesão, ao procedimento e ao resultado histológico. Resultados: A maioria dos pacientes era do sexo feminino (57%) e a idade média foi 53,0 ± 16,4 anos. Em 139 casos (74,6%) a suspeita diagnóstica era metástase e os tumores primários mais comuns foram de mama (32,1%) e próstata (11,8%). Os ossos mais envolvidos foram coluna vertebral (36,0%), bacia (32,8%) e ossos longos (18,3%). Houve complicações em apenas três pacientes (1,6%), incluindo uma fratura, um caso de parestesia com comprometimento funcional e uma quebra da agulha necessitando remoção cirúrgica. Amostras de 183 lesões (98,4%) foram consideradas adequadas para diagnóstico. Resultados malignos foram mais frequentes nos pacientes com suspeita de lesão secundária e história de neoplasia maligna conhecida (p < 0,001) e nos procedimentos orientados pela PET/CT (p = 0,011). Conclusão: A biópsia percutânea guiada por TC é segura e eficaz no diagnóstico de lesões ósseas suspeitas.
Resumo:
Biópsia percutânea guiada por tomografia computadorizada é uma alternativa segura e eficaz para avaliação de lesões intraorbitárias selecionadas, em que o diagnóstico pré-operatório é importante para o planejamento terapêutico. Descrevemos dois casos de pacientes com tumores orbitários incomuns em que o diagnóstico foi obtido por biópsia com agulha grossa guiada por tomografia computadorizada, dando ênfase para os aspectos técnicos do procedimento.
Resumo:
The emergence of social media has led many companies to adopt them as marketing channels. Yet these media are novel enough that many marketers are still unsure as to how to plan an effective social media marketing strategy, actually oriented towards engaging prospects. In this article, we discuss how to shape a social media strategy. To do so, we show the key concepts and steps involved in the planning process of this type of digital marketing strategy, and how to measure their impact immediately.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.
Resumo:
En este trabajo final de grado se pretende hacer una valoración objetiva de las herramientas disponibles en el mercado actual para la realización de proyectos de business intelligence.
Resumo:
El presente proyecto tiene como objetivo desarrollar una tecnología que permita codificar grandes cantidades de texto de manera automática para posteriormente ser visualizada y analizada mediante una aplicación diseñada en Qlikview. El motor de la investigación e implementación de este proyecto se ha encontrado en la incipiente presencia de tecnologías informáticas en los procesos de codificación para ciencias políticas. De esta manera, el programa creado tiene como objetivo automatizar un proceso que se desarrolla comúnmente de manera manual y, por ende, las ventajas de introducir técnicas informáticas son notablemente valiosas. Estas automatizaciones permiten ahorrar tanto en tiempo de codificación, como en recursos económicos o humanos. Se ha elaborado una revisión teórica y metodológica que han servido como instrumentos de estudio y mejora, con el firme propósito de reducir al máximo el margen de error y ofrecer un instrumento de calidad con salida de mercado real. El método de clasificación utilizado ha sido Bayes, y se ha implementado utilizando Matlab. Los resultados de la clasificación han llegado a índices del 99.2%. En la visualización y análisis mediante Qlikview se pueden modificar los parámetros referentes a partido político, año, categoría o región, con lo que se permite analizar numerosos aspectos relacionados con la distribución de las palabras repartidas entre las diferentes categorías y en el tiempo.
Resumo:
Most motor bodily injury (BI) claims are settled by negotiation, with fewer than 5% of cases going to court. A well-defined negotiation strategy is thus very useful for insurance companies. In this paper we assume that the monetary compensation awarded in court is the upper amount to be offered by the insurer in the negotiation process. Using a real database, a log-linear model is implemented to estimate the maximal offer. Non-spherical disturbances are detected. Correlation occurs when various claims are settled in the same judicial verdict. Group wise heteroscedasticity is due to the influence of the forensic valuation on the final compensation amount. An alternative approximation based on generalized inference theory is applied to estimate confidence intervals on variance components, since classical interval estimates may be unreliable for datasets with unbalanced structures.
Resumo:
The objective of this thesis is to shed light on the vertical vibration of granular materials for potential interest in the power generation industry. The main focus is investigating the drag force and frictional resistance that influence the movement of a granular material (in the form of glass beads) contained in a vessel, which is subjected to sinusoidal oscillation. The thesis is divided into three parts: theoretical analysis, experiments and computer simulations. The theoretical part of this study presents the underlying physical phenomena of the vibration of granular materials. Experiments are designed to determine fundamental parameters that contribute to the behavior of vibrating granular media. Numerical simulations include the use of three different software applications: FLUENT, LS-DYNA and ANSYS Workbench. The goal of these simulations is to test theoretical and semiempirical models for granular materials in order to validate their compatibility with the experimental findings, to assist in predicting their behavior, and to estimate quantities that are hard to measure in laboratory.
Resumo:
Streaming potential measurements for the surface charge characterisation of different filter media types and materials were used. The equipment was developed further so that measurements could be taken along the surfaces, and so that tubular membranes could also be measured. The streaming potential proved to be a very useful tool in the charge analysis of both clean and fouled filter media. Adsorption and fouling could be studied, as could flux, as functions of time. A module to determine the membrane potential was also constructed. The results collected from the experiments conducted with these devices were used in the study of the theory of streaming potential as an electrokinetic phenomenon. Several correction factors, which are derived to take into account the surface conductance and the electrokinetic flow in very narrow capillaries, were tested in practice. The surface materials were studied using FTIR and the results compared with those from the streaming potentials. FTIR analysis was also found to be a useful tool in the characterisation of filters, as well as in the fouling studies. Upon examination of the recorded spectra from different depths in a sample it was possible to determine the adsorption sites. The influence of an external electric field on the cross flow microflltration of a binary protein system was investigated using a membrane electroflltration apparatus. The results showed that a significant improvement could be achieved in membrane filtration by using the measured electrochemical properties to help adjust the process conditions.
Resumo:
We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1 MHz), while quantification of the interaction forces is obtained with finite-element numerical calculations. The results presented open a wide range of possibilities in a number of fields where the dielectric properties of materials need to be probed at the nanoscale and in a liquid environment.
Resumo:
We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1 MHz), while quantification of the interaction forces is obtained with finite-element numerical calculations. The results presented open a wide range of possibilities in a number of fields where the dielectric properties of materials need to be probed at the nanoscale and in a liquid environment.
Resumo:
We present new analytical tools able to predict the averaged behavior of fronts spreading through self-similar spatial systems starting from reaction-diffusion equations. The averaged speed for these fronts is predicted and compared with the predictions from a more general equation (proposed in a previous work of ours) and simulations. We focus here on two fractals, the Sierpinski gasket (SG) and the Koch curve (KC), for two reasons, i.e. i) they are widely known structures and ii) they are deterministic fractals, so the analytical study of them turns out to be more intuitive. These structures, despite their simplicity, let us observe several characteristics of fractal fronts. Finally, we discuss the usefulness and limitations of our approa