875 resultados para autonomous intelligent systems
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in onedimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.
Resumo:
These are the full proceedings of the conference.
Resumo:
Challenges of returnable transport equipment (RTE) management continue to heighten as the popularity of their usage magnifies. Logistics companies are investigating the implementation of radio-frequency identification (RFID) technology to alleviate problems such as loss prevention and stock reduction. However, the research within this field is limited and fails to fully explore with depth, the wider network improvements that can be made to optimize the supply chain through efficient RTE management. This paper, investigates the nature of RTE network management building on current research and practices, filling a gap in the literature, through the investigation of a product-centric approach where the paradigms of “intelligent products” and “autonomous objects” are explored. A network optimizing approach with RTE management is explored, encouraging advanced research development of the RTE paradigm to align academic research with problematic areas in industry. Further research continues with the development of an agent-based software system, ready for application to a real-case study distribution network, producing quantitative results for further analysis. This is pivotal on the endeavor to developing agile support systems, fully utilizing an information-centric environment and encouraging RTE to be viewed as critical network optimizing tools rather than costly waste.
Resumo:
Mathematics is highly structured and also underpins most of science and engineering. For this reason, it has proved a very suitable domain for Intelligent Tutoring System (ITS) research, with the result that probably more tutoring systems have been constructed for the domain than any other. However, the literature reveals that there still exists no consensus on a credible approach or approaches for the design of such systems, despite numerous documented efforts. Current approaches to the construction of ITSs leave much to be desired. Consequently, existing ITSs in the domain suffer from a considerable number of shortcomings which render them 'unintelligent'. The thesis examines some of the reasons why this is the case. Following a critical review of existing ITSs in the domain, and some pilot studies, an alternative approach to their construction is proposed (the 'iterative-style' approach); this supports an iterative style, and also improves on at least some of the shortcomings of existing approaches. The thesis also presents an ITS for fractions which has been developed using this approach, and which has been evaluated in various ways. It has, demonstrably, improved on many of the limitations of existing ITSs; furthermore, it has been shown to be largely 'intelligent', at least more so than current tutors for the domain. Perhaps more significantly, the tutor has also been evaluated against real students with, so far, very encouraging results. The thesis thus concludes that the novel iterative-style approach is a more credible approach to the construction of ITSs in mathematics than existing techniques.
Resumo:
Summary writing is an important part of many English Language Examinations. As grading students' summary writings is a very time-consuming task, computer-assisted assessment will help teachers carry out the grading more effectively. Several techniques such as latent semantic analysis (LSA), n-gram co-occurrence and BLEU have been proposed to support automatic evaluation of summaries. However, their performance is not satisfactory for assessing summary writings. To improve the performance, this paper proposes an ensemble approach that integrates LSA and n-gram co-occurrence. As a result, the proposed ensemble approach is able to achieve high accuracy and improve the performance quite substantially compared with current techniques. A summary assessment system based on the proposed approach has also been developed.
Resumo:
We present a complex neural network model of user behavior in distributed systems. The model reflects both dynamical and statistical features of user behavior and consists of three components: on-line and off-line models and change detection module. On-line model reflects dynamical features by predicting user actions on the basis of previous ones. Off-line model is based on the analysis of statistical parameters of user behavior. In both cases neural networks are used to reveal uncharacteristic activity of users. Change detection module is intended for trends analysis in user behavior. The efficiency of complex model is verified on real data of users of Space Research Institute of NASU-NSAU.
Resumo:
* This investigation was supported by the Bulgarian Ministry of Science and Education under Grant MM-7.
Resumo:
Methods of analogous reasoning and case-based reasoning for intelligent decision support systems are considered. Special attention is drawn to methods based on a structural analogy that take the context into account. This work was supported by RFBR (projects 02-07-90042, 05-07-90232).
Resumo:
The paper develops a set of ideas and techniques supporting analogical reasoning throughout the life-cycle of terrorist acts. Implementation of these ideas and techniques can enhance the intellectual level of computer-based systems for a wide range of personnel dealing with various aspects of the problem of terrorism and its effects. The method combines techniques of structure-sensitive distributed representations in the framework of Associative-Projective Neural Networks, and knowledge obtained through the progress in analogical reasoning, in particular the Structure Mapping Theory. The impact of these analogical reasoning tools on the efforts to minimize the effects of terrorist acts on civilian population is expected by facilitating knowledge acquisition and formation of terrorism-related knowledge bases, as well as supporting the processes of analysis, decision making, and reasoning with those knowledge bases for users at various levels of expertise before, during, and after terrorist acts.
Resumo:
In this work we suggest the technology of creation of intelligent tutoring systems which are oriented to teach knowledge. It is supposed the acquisition of expert’s knowledge by using of the Formal Concept Analysis method, then construction the test questions which are used for verification of the pupil's knowledge with the expert’s knowledge. Then the further tutoring strategy is generated by the results of this verification.
Resumo:
Development of methods and tools for modeling human reasoning (common sense reasoning) by analogy in intelligent decision support systems is considered. Special attention is drawn to modeling reasoning by structural analogy taking the context into account. The possibility of estimating the obtained analogies taking into account the context is studied. This work was supported by RFBR.
Resumo:
Modern advances in technology have led to more complex manufacturing processes whose success centres on the ability to control these processes with a very high level of accuracy. Plant complexity inevitably leads to poor models that exhibit a high degree of parametric or functional uncertainty. The situation becomes even more complex if the plant to be controlled is characterised by a multivalued function or even if it exhibits a number of modes of behaviour during its operation. Since an intelligent controller is expected to operate and guarantee the best performance where complexity and uncertainty coexist and interact, control engineers and theorists have recently developed new control techniques under the framework of intelligent control to enhance the performance of the controller for more complex and uncertain plants. These techniques are based on incorporating model uncertainty. The newly developed control algorithms for incorporating model uncertainty are proven to give more accurate control results under uncertain conditions. In this paper, we survey some approaches that appear to be promising for enhancing the performance of intelligent control systems in the face of higher levels of complexity and uncertainty.
Resumo:
MSC 2010: 26A33, 34D05, 37C25
Resumo:
Many systems and applications are continuously producing events. These events are used to record the status of the system and trace the behaviors of the systems. By examining these events, system administrators can check the potential problems of these systems. If the temporal dynamics of the systems are further investigated, the underlying patterns can be discovered. The uncovered knowledge can be leveraged to predict the future system behaviors or to mitigate the potential risks of the systems. Moreover, the system administrators can utilize the temporal patterns to set up event management rules to make the system more intelligent. With the popularity of data mining techniques in recent years, these events grad- ually become more and more useful. Despite the recent advances of the data mining techniques, the application to system event mining is still in a rudimentary stage. Most of works are still focusing on episodes mining or frequent pattern discovering. These methods are unable to provide a brief yet comprehensible summary to reveal the valuable information from the high level perspective. Moreover, these methods provide little actionable knowledge to help the system administrators to better man- age the systems. To better make use of the recorded events, more practical techniques are required. From the perspective of data mining, three correlated directions are considered to be helpful for system management: (1) Provide concise yet comprehensive summaries about the running status of the systems; (2) Make the systems more intelligence and autonomous; (3) Effectively detect the abnormal behaviors of the systems. Due to the richness of the event logs, all these directions can be solved in the data-driven manner. And in this way, the robustness of the systems can be enhanced and the goal of autonomous management can be approached. This dissertation mainly focuses on the foregoing directions that leverage tem- poral mining techniques to facilitate system management. More specifically, three concrete topics will be discussed, including event, resource demand prediction, and streaming anomaly detection. Besides the theoretic contributions, the experimental evaluation will also be presented to demonstrate the effectiveness and efficacy of the corresponding solutions.