853 resultados para auction aggregation
Resumo:
Making sense of auction sales, in terms of English contract law, is no easy task. Despite the common perception of hammers hitting blocks, signifying the creation of the basic sale contract,1 a typical auction sale necessarily involves the making of several forms of contract other than the obvious primary sale agreement. The purpose of this article, therefore, is threefold, namely, to (1) examine these various forms of contractual relationship2 which may come into existence as a result of a traditional (face to face) auction sale; (2) consider specifically the selling of land at public auction with a view to advocating a change in the law requiring the formality of writing for sales contracts of land for both private and public auctions, and (3) compare briefly the contractual elements of an online ascending model of auction sale typified by the eBay phenomenon.
Resumo:
Information extraction or knowledge discovery from large data sets should be linked to data aggregation process. Data aggregation process can result in a new data representation with decreased number of objects of a given set. A deterministic approach to separable data aggregation means a lesser number of objects without mixing of objects from different categories. A statistical approach is less restrictive and allows for almost separable data aggregation with a low level of mixing of objects from different categories. Layers of formal neurons can be designed for the purpose of data aggregation both in the case of deterministic and statistical approach. The proposed designing method is based on minimization of the of the convex and piecewise linear (CPL) criterion functions.
Resumo:
In the nonparametric framework of Data Envelopment Analysis the statistical properties of its estimators have been investigated and only asymptotic results are available. For DEA estimators results of practical use have been proved only for the case of one input and one output. However, in the real world problems the production process is usually well described by many variables. In this paper a machine learning approach to variable aggregation based on Canonical Correlation Analysis is presented. This approach is applied for efficiency estimation of all the farms in Terceira Island of the Azorean archipelago.
Resumo:
Силвия К. Баева, Цветана Хр. Недева - Важен аспект в системата на Министерството на регионалното развитие и благоустройство е работата по Оперативна програма “Регионално развитие” с приоритетна ос “Устойчиво и интегрирано градско развитие” по операция “Подобряване на физическата среда и превенция на риска”. По тази програма са включени 86 общини. Финансовият ресурс на тази операция е на стойност 238 589 939 евро, от които 202 801 448 евро са европейско финансиране [1]. Всяка от тези 86 общини трябва да реши задачата за възлагане на обществена поръчка на определена фирма по тази операция. Всъщност, тази задача е задача за провеждане на общински търг за избор на фирма-изпълнител. Оптималният избор на фирма-изпълнител е много важен. Задачата за провеждане на търг ще формулираме като задача на многокритериалното вземане на решения, като чрез подходящо изграждане на критерии и методи може да се трансформира до задача на еднокритериалната оптимизация.
Resumo:
Typical Double Auction (DA) models assume that trading agents are one-way traders. With this limitation, they cannot directly reflect the fact individual traders in financial markets (the most popular application of double auction) choose their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Based on experiments under both static and dynamic settings, we find that the allocative efficiency of a static continuous BDA market comes from rational selection of trading directions and is negatively related to the intelligence of trading strategies. Moreover, we introduce Kernel trading strategy designed based on probability density estimation for general DA market. Our experiments show it outperforms some intelligent DA market trading strategies. Copyright © 2013, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.
Resumo:
Vehicle-to-Grid (V2G) system with efficient Demand Response Management (DRM) is critical to solve the problem of supplying electricity by utilizing surplus electricity available at EVs. An incentivilized DRM approach is studied to reduce the system cost and maintain the system stability. EVs are motivated with dynamic pricing determined by the group-selling based auction. In the proposed approach, a number of aggregators sit on the first level auction responsible to communicate with a group of EVs. EVs as bidders consider Quality of Energy (QoE) requirements and report interests and decisions on the bidding process coordinated by the associated aggregator. Auction winners are determined based on the bidding prices and the amount of electricity sold by the EV bidders. We investigate the impact of the proposed mechanism on the system performance with maximum feedback power constraints of aggregators. The designed mechanism is proven to have essential economic properties. Simulation results indicate the proposed mechanism can reduce the system cost and offer EVs significant incentives to participate in the V2G DRM operation.
Resumo:
In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.
Resumo:
The paper reviews some additive and multiplicative properties of ranking procedures used for generalized tournaments with missing values and multiple comparisons. The methods analysed are the score, generalised row sum and least squares as well as fair bets and its variants. It is argued that generalised row sum should be applied not with a fixed parameter, but a variable one proportional to the number of known comparisons. It is shown that a natural additive property has strong links to independence of irrelevant matches, an axiom judged unfavourable when players have different opponents.
Resumo:
The paper reviews some axioms of additivity concerning ranking methods used for generalized tournaments with possible missing values and multiple comparisons. It is shown that one of the most natural properties, called consistency, has strong links to independence of irrelevant comparisons, an axiom judged unfavourable when players have different opponents. Therefore some directions of weakening consistency are suggested, and several ranking methods, the score, generalized row sum and least squares as well as fair bets and its two variants (one of them entirely new) are analysed whether they satisfy the properties discussed. It turns out that least squares and generalized row sum with an appropriate parameter choice preserve the relative ranking of two objects if the ranking problems added have the same comparison structure.
Resumo:
An iterative travel time forecasting scheme, named the Advanced Multilane Prediction based Real-time Fastest Path (AMPRFP) algorithm, is presented in this dissertation. This scheme is derived from the conventional kernel estimator based prediction model by the association of real-time nonlinear impacts that caused by neighboring arcs’ traffic patterns with the historical traffic behaviors. The AMPRFP algorithm is evaluated by prediction of the travel time of congested arcs in the urban area of Jacksonville City. Experiment results illustrate that the proposed scheme is able to significantly reduce both the relative mean error (RME) and the root-mean-squared error (RMSE) of the predicted travel time. To obtain high quality real-time traffic information, which is essential to the performance of the AMPRFP algorithm, a data clean scheme enhanced empirical learning (DCSEEL) algorithm is also introduced. This novel method investigates the correlation between distance and direction in the geometrical map, which is not considered in existing fingerprint localization methods. Specifically, empirical learning methods are applied to minimize the error that exists in the estimated distance. A direction filter is developed to clean joints that have negative influence to the localization accuracy. Synthetic experiments in urban, suburban and rural environments are designed to evaluate the performance of DCSEEL algorithm in determining the cellular probe’s position. The results show that the cellular probe’s localization accuracy can be notably improved by the DCSEEL algorithm. Additionally, a new fast correlation technique for overcoming the time efficiency problem of the existing correlation algorithm based floating car data (FCD) technique is developed. The matching process is transformed into a 1-dimensional (1-D) curve matching problem and the Fast Normalized Cross-Correlation (FNCC) algorithm is introduced to supersede the Pearson product Moment Correlation Co-efficient (PMCC) algorithm in order to achieve the real-time requirement of the FCD method. The fast correlation technique shows a significant improvement in reducing the computational cost without affecting the accuracy of the matching process.
Resumo:
The present study measured a chemotherapy drug, etoposide, in pig cerebrospinal fluid after intraventricular administrations were made directly into the fourth ventricle of the brain; cytotoxic concentrations for a twenty-four hour period after infusions. The analytical method developed validates the potential treatment of malignant brain tumors. The increase in serum carotenoid concentration in 30 healthy individuals was measured after supplementation with lutein. HPLC analysis of serum levels of carotenoids showed an increase in the concentration of lutein and a constant concentration of other major serum carotenoids. An initial attempt to measure the enthalpy of aggregation of xanthophylls was conducted by using ultraviolet-visible spectroscopy. The enthalpy of lutein aggregation and AH range of zeaxanthin disordering of aggregation are reported. Monomethyl ether of lutein did not aggregate in any of the aqueous solutions.
Resumo:
This project was supported by the National Natural Science Foundation of China (No. 41572116), the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan) (No. CUG160602).
Resumo:
Self-organization of organic molecules with carbon nanomaterials leads to formation of functionalized molecular nano-complexes with advanced features. We present a study of physical and chemical properties of carbon nanotube-surfactant-indocarbocyanine dye (astraphloxin) in water focusing on aggregation of the dye and resonant energy transfer from the dye to the nanotubes. Self-assembly of astraphloxin is evidenced in absorbance and photoluminescence depending dramatically on the concentrations of both the dye and surfactant in the mixtures. We observed an appearance of new photoluminescence peaks in visible range from the dye aggregates. The aggregates characterized with red shifted photoluminescence peaks at 595, 635 and 675 nm are formed mainly due to the presence of surfactant at the premicellar concentration. The energy transfer from the dye to the nanotubes amplifying near-infrared photoluminescence from the nanotubes is not affected by the aggregation of astraphloxin molecules providing important knowledge for further development of advanced molecular nano-complexes. The aggregation with the turned-on peaks and the energy transfer with amplified photoluminescence create powerful tools of visualization and/or detection of the nanotubes in visible and near-infrared spectral range, respectively, boosting its possible applications in sensors, energy generation/storage, and healthcare.
Resumo:
Sensitive detection of pathogens is critical to ensure the safety of food supplies and to prevent bacterial disease infection and outbreak at the first onset. While conventional techniques such as cell culture, ELISA, PCR, etc. have been used as the predominant detection workhorses, they are however limited by either time-consuming procedure, complicated sample pre-treatment, expensive analysis and operation, or inability to be implemented at point-of-care testing. Here, we present our recently developed assay exploiting enzyme-induced aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. In the experiments, AuNPs are first functionalized with specific, single-stranded RNA probes so that they exhibit high stability in solution even under high electrolytic condition thus exhibiting red color. When bacterial DNA is present in a sample, a DNA-RNA heteroduplex will be formed and subsequently prone to the RNase H cleavage on the RNA probe, allowing the DNA to liberate and hybridize with another RNA strand. This continuously happens until all of the RNA strands are cleaved, leaving the nanoparticles ‘unprotected’. The addition of NaCl will cause the ‘unprotected’ nanoparticles to aggregate, initiating a colour change from red to blue. The reaction is performed in a multi-well plate format, and the distinct colour signal can be discriminated by naked eye or simple optical spectroscopy. As a result, bacterial DNA as low as pM could be unambiguously detected, suggesting that the enzyme-induced aggregation of AuNPs assay is very easy to perform and sensitive, it will significantly benefit to development of fast and ultrasensitive methods that can be used for disease detection and diagnosis.