900 resultados para applicazione web, semantic web, semantic publishing, angularJS, user experience, usabilità
Resumo:
The World Wide Web provides plentiful contents for Web-based learning, but its hyperlink-based architecture connects Web resources for browsing freely rather than for effective learning. To support effective learning, an e-learning system should be able to discover and make use of the semantic communities and the emerging semantic relations in a dynamic complex network of learning resources. Previous graph-based community discovery approaches are limited in ability to discover semantic communities. This paper first suggests the Semantic Link Network (SLN), a loosely coupled semantic data model that can semantically link resources and derive out implicit semantic links according to a set of relational reasoning rules. By studying the intrinsic relationship between semantic communities and the semantic space of SLN, approaches to discovering reasoning-constraint, rule-constraint, and classification-constraint semantic communities are proposed. Further, the approaches, principles, and strategies for discovering emerging semantics in dynamic SLNs are studied. The basic laws of the semantic link network motion are revealed for the first time. An e-learning environment incorporating the proposed approaches, principles, and strategies to support effective discovery and learning is suggested.
Resumo:
Evaluations of semantic search systems are generally small scale and ad hoc due to the lack of appropriate resources such as test collections, agreed performance criteria and independent judgements of performance. By analysing our work in building and evaluating semantic tools over the last five years, we conclude that the growth of the semantic web led to an improvement in the available resources and the consequent robustness of performance assessments. We propose two directions for continuing evaluation work: the development of extensible evaluation benchmarks and the use of logging parameters for evaluating individual components of search systems.
Resumo:
Schema heterogeneity issues often represent an obstacle for discovering coreference links between individuals in semantic data repositories. In this paper we present an approach, which performs ontology schema matching in order to improve instance coreference resolution performance. A novel feature of the approach is its use of existing instance-level coreference links defined in third-party repositories as background knowledge for schema matching techniques. In our tests of this approach we obtained encouraging results, in particular, a substantial increase in recall in comparison with existing sets of coreference links.
Resumo:
Because poor quality semantic metadata can destroy the effectiveness of semantic web technology by hampering applications from producing accurate results, it is important to have frameworks that support their evaluation. However, there is no such framework developedto date. In this context, we proposed i) an evaluation reference model, SemRef, which sketches some fundamental principles for evaluating semantic metadata, and ii) an evaluation framework, SemEval, which provides a set of instruments to support the detection of quality problems and the collection of quality metrics for these problems. A preliminary case study of SemEval shows encouraging results.
Resumo:
Because metadata that underlies semantic web applications is gathered from distributed and heterogeneous data sources, it is important to ensure its quality (i.e., reduce duplicates, spelling errors, ambiguities). However, current infrastructures that acquire and integrate semantic data have only marginally addressed the issue of metadata quality. In this paper we present our metadata acquisition infrastructure, ASDI, which pays special attention to ensuring that high quality metadata is derived. Central to the architecture of ASDI is a verification engine that relies on several semantic web tools to check the quality of the derived data. We tested our prototype in the context of building a semantic web portal for our lab, KMi. An experimental evaluation comparing the automatically extracted data against manual annotations indicates that the verification engine enhances the quality of the extracted semantic metadata.
Resumo:
While much of a company's knowledge can be found in text repositories, current content management systems have limited capabilities for structuring and interpreting documents. In the emerging Semantic Web, search, interpretation and aggregation can be addressed by ontology-based semantic mark-up. In this paper, we examine semantic annotation, identify a number of requirements, and review the current generation of semantic annotation systems. This analysis shows that, while there is still some way to go before semantic annotation tools will be able to address fully all the knowledge management needs, research in the area is active and making good progress.
Resumo:
The realization of the Semantic Web is constrained by a knowledge acquisition bottleneck, i.e. the problem of how to add RDF mark-up to the millions of ordinary web pages that already exist. Information Extraction (IE) has been proposed as a solution to the annotation bottleneck. In the task based evaluation reported here, we compared the performance of users without access to annotation, users working with annotations which had been produced from manually constructed knowledge bases, and users working with annotations augmented using IE. We looked at retrieval performance, overlap between retrieved items and the two sets of annotations, and usage of annotation options. Automatically generated annotations were found to add value to the browsing experience in the scenario investigated. Copyright 2005 ACM.
Resumo:
We are interested in the annotation of knowledge which does not necessarily require a consensus. Scholarly debate is an example of such a category of knowledge where disagreement and contest are widespread and desirable, and unlike many Semantic Web approaches, we are interested in the capture and the compilation of these conflicting viewpoints and perspectives. The Scholarly Ontologies project provides the underlying formalism to represent this meta-knowledge, and we will look at ways to lighten the burden of its creation. After having described some particularities of this kind of knowledge, we introduce ClaimSpotter, our approach to support its ‘capture’, based on the elicitation of a number of recommendations which are presented for consideration to our annotators (or analysts), and give some elements of evaluation.
Resumo:
The World Wide Web is opening up access to documents and data for scholars. However it has not yet impacted on one of the primary activities in research: assessing new findings in the light of current knowledge and debating it with colleagues. The ClaiMaker system uses a directed graph model with similarities to hypertext, in which new ideas are published as nodes, which other contributors can build on or challenge in a variety of ways by linking to them. Nodes and links have semantic structure to facilitate the provision of specialist services for interrogating and visualizing the emerging network. By way of example, this paper is grounded in a ClaiMaker model to illustrate how new claims can be described in this structured way.
Resumo:
This paper describes an online survey that was conducted to explore typical Internet users' awareness and knowledge of specific technologies that relate to their security and privacy when using a Web browser to access the Internet. The survey was conducted using an anonymous, online questionnaire. Over a four month period, 237 individuals completed the questionnaire. Respondents were predominately Canadian, with substantial numbers from the United Kingdom and the United States. Important findings include evidence that users have tried to educate themselves regarding their online security and privacy, but with limited success; different interpretations of the term "secure Web site" can lead to very different levels of trust in a site; respondents strongly expressed their skepticism about privacy policies, but nevertheless believe that sites can be trusted to respect their stated policies; and users may confuse browser cookies with other types of data stored locally by browsers, leading to inappropriate conclusions about the risks they present.
Resumo:
False friends are pairs of words in two languages that are perceived as similar but have different meanings. We present an improved algorithm for acquiring false friends from sentence-level aligned parallel corpus based on statistical observations of words occurrences and co-occurrences in the parallel sentences. The results are compared with an entirely semantic measure for cross-lingual similarity between words based on using the Web as a corpus through analyzing the words’ local contexts extracted from the text snippets returned by searching in Google. The statistical and semantic measures are further combined into an improved algorithm for identification of false friends that achieves almost twice better results than previously known algorithms. The evaluation is performed for identifying cognates between Bulgarian and Russian but the proposed methods could be adopted for other language pairs for which parallel corpora and bilingual glossaries are available.
Resumo:
Many software engineers have found that it is difficult to understand, incorporate and use different formal models consistently in the process of software developments, especially for large and complex software systems. This is mainly due to the complex mathematical nature of the formal methods and the lack of tool support. It is highly desirable to have software models and their related software artefacts systematically connected and used collaboratively, rather than in isolation. The success of the Semantic Web, as the next generation of Web technology, can have profound impact on the environment for formal software development. It allows both the software engineers and machines to understand the content of formal models and supports more effective software design in terms of understanding, sharing and reusing in a distributed manner. To realise the full potential of the Semantic Web in formal software development, effectively creating proper semantic metadata for formal software models and their related software artefacts is crucial. This paper proposed a framework that allows users to interconnect the knowledge about formal software models and other related documents using the semantic technology. We first propose a methodology with tool support is proposed to automatically derive ontological metadata from formal software models and semantically describe them. We then develop a Semantic Web environment for representing and sharing formal Z/OZ models. A method with prototype tool is presented to enhance semantic query to software models and other artefacts. © 2014.
Resumo:
The information domain is a recognised sphere for the influence, ownership, and control of information and it's specifications, format, exploitation and explanation (Thompson, 1967). The article presents a description of the financial information domain issues related to the organisation and operation of a stock market. We review the strategic, institutional and standards dimensions of the stock market information domain in relation to the current semantic web knowledge and how and whether this could be used in modern web based stock market information systems to provide the quality of information that their stakeholders want. The analysis is based on the FINE model (Blanas, 2003). The analysis leads to a number of research questions for future research.
Resumo:
Malapropism is a semantic error that is hardly detectable because it usually retains syntactical links between words in the sentence but replaces one content word by a similar word with quite different meaning. A method of automatic detection of malapropisms is described, based on Web statistics and a specially defined Semantic Compatibility Index (SCI). For correction of the detected errors, special dictionaries and heuristic rules are proposed, which retains only a few highly SCI-ranked correction candidates for the user’s selection. Experiments on Web-assisted detection and correction of Russian malapropisms are reported, demonstrating efficacy of the described method.
Resumo:
In this paper the key features of a two-layered model for describing the semantic of dynamical web resources are introduced. In the current Semantic Web proposal [Berners-Lee et al., 2001] web resources are classified into static ontologies which describes the semantic network of their inter-relationships [Kalianpur, 2001][Handschuh & Staab, 2002] and complex constraints described by logical quantified formula [Boley et al., 2001][McGuinnes & van Harmelen, 2004][McGuinnes et al., 2004], the basic idea is that software agents can use techniques of automatic reasoning in order to relate resources and to support sophisticated web application. On the other hand, web resources are also characterized by their dynamical aspects, which are not adequately addressed by current web models. Resources on the web are dynamical since, in the minimal case, they can appear or disappear from the web and their content is upgraded. In addition, resources can traverse different states, which characterized the resource life-cycle, each resource state corresponding to different possible uses of the resource. Finally most resources are timed, i.e. they information they provide make sense only if contextualised with respect to time, and their validity and accuracy is greatly bounded by time. Temporal projection and deduction based on dynamical and time constraints of the resources can be made and exploited by software agents [Hendler, 2001] in order to make previsions about the availability and the state of a resource, for deciding when consulting the resource itself or in order to deliberately induce a resource state change for reaching some agent goal, such as in the automated planning framework [Fikes & Nilsson, 1971][Bacchus & Kabanza,1998].