938 resultados para additive genetic variation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

La variation phénotypique est essentielle à la persistance des organismes dans le temps ainsi qu’à la colonisation de nouveaux habitats. Les principales sources de variation phénotypique sont la génétique et l'épigénétique. L'épigénétique a été proposé comme un atout important pour les organismes asexués pour compenser le manque de diversité génétique. L'objectif de cette étude est d'évaluer si l’absence de variation génétique est compensée par l'épigénétique en comparant les profils de méthylation d’individus gynogènes et kleptogènes des hybrides de salamandre à points bleus. Les individus échantillonnés s’organisent en cinq groupes génétiquement différenciés, provenant du même haplome paternel A. jeffersonianum. Deux des cinq groupes sont exclusivement gynogènes, pour des raisons écologiques ou génomiques. Les trois autres groupes sont formés d’individus parfois kleptogènes, car ils présentent une variation génétique plus élevée au sein d’un site qu’entre les sites, en plus de porter des allèles très divergents par rapport à la distribution globale des allèles hybrides, trouvés en haute fréquence dans les populations sympatriques de A. laterale. Les patrons épigénétiques sont variables et distincts entre les cinq groupes génétiques. Les groupes gynogènes sont les seuls à présenter un effet environnemental significatif sur leurs patrons épigénétiques, suggérant que ces individus clonaux doivent être en mesure de maximiser leur potentiel de variation épigénétique pour faire face à des variations environnementales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Characterizing genetic variation by retrospective genotyping of trophy or historical artifacts from endangered species is an important conservation tool. Loss of genetic diversity in top predators such as the white shark Carcharodon carcharias remains an issue, exacerbated in this species by declining, sometimes isolated philopatric populations. We successfully sequenced mitochondrial DNA (mtDNA) D-loop from osteodentine of contemporary South African white shark teeth (from 3 jaws), and from 34 to 129 yr old dried cartilage and skin samples from 1 Pacific Ocean and 5 Mediterranean sharks. Osteodentine-derived sequences from South African fish matched those derived from an individual’s finclips, but were generally of poorer quality than those from skin and cartilage of historical samples. Three haplotypes were identified from historical Mediterranean samples (n = 5); 2 individuals had unique sequences and 3 shared the contemporary Mediterranean haplotype. Placement of previously undescribed mtDNA haplotypes from historical material within both the Mediterranean and Pacific clades fits with the accepted intra-specific phylogeny derived from contemporary material, verifying our approaches. The utility of our methodology is in its provision of additional genetic resources from osteodentine (for species lacking tooth pulp) and cartilage of rare and endangered species held in often uncurated, contemporary and historical dry collections. Such material can usefully supplement estimates of connectivity, population history, and stock viability. We confirm the depauperate haplotype diversity of historical Mediterranean sharks, consistent with founding by a small number of Pacific colonizers. The consequent lack of diversity suggests serious challenges for the maintenance of this top predator and the Mediterranean ecosystem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Characterizing genetic variation by retrospective genotyping of trophy or historical artifacts from endangered species is an important conservation tool. Loss of genetic diversity in top predators such as the white shark Carcharodon carcharias remains an issue, exacerbated in this species by declining, sometimes isolated philopatric populations. We successfully sequenced mitochondrial DNA (mtDNA) D-loop from osteodentine of contemporary South African white shark teeth (from 3 jaws), and from 34 to 129 yr old dried cartilage and skin samples from 1 Pacific Ocean and 5 Mediterranean sharks. Osteodentine-derived sequences from South African fish matched those derived from an individual’s finclips, but were generally of poorer quality than those from skin and cartilage of historical samples. Three haplotypes were identified from historical Mediterranean samples (n = 5); 2 individuals had unique sequences and 3 shared the contemporary Mediterranean haplotype. Placement of previously undescribed mtDNA haplotypes from historical material within both the Mediterranean and Pacific clades fits with the accepted intra-specific phylogeny derived from contemporary material, verifying our approaches. The utility of our methodology is in its provision of additional genetic resources from osteodentine (for species lacking tooth pulp) and cartilage of rare and endangered species held in often uncurated, contemporary and historical dry collections. Such material can usefully supplement estimates of connectivity, population history, and stock viability. We confirm the depauperate haplotype diversity of historical Mediterranean sharks, consistent with founding by a small number of Pacific colonizers. The consequent lack of diversity suggests serious challenges for the maintenance of this top predator and the Mediterranean ecosystem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hedgerows represent important components of agri-environment landscapes that are increasingly coming under threat from climate change, emergent diseases, invasive species and land use change. Given that population genetic data can be used to inform best-practice management strategies for woodland and hedgerow tree species, we carried out a study on hawthorn (Crataegus monogyna Jacq.), a key component of hedgerows, on a regional basis using a combination of nuclear and chloroplast microsatellite markers. We found that levels of genetic diversity were high and comparable to, or slightly higher than, other tree species from the same region. Levels of population differentiation for both sets of markers, however, were extremely low, suggesting extensive gene flow via both seed and pollen. These findings suggest that a holistic approach to woodland management, one which does not necessarily rely on the concept of “seed zones” previously suggested, but which also takes into account populations with high and/or rare chloroplast (i.e. seed-specific) genetic variation, might be the best approach to restocking and replanting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The present study was undertaken towards the development of SSR markers and assessing genetic relationships among 32 date palm ( Phoenix dactylifera L.) representing common cultivars grown in different geographical regions in Saudi Arabia. Results: Ninety-three novel simple sequence repeat markers were developed and screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs were dinucleotide, 25% tri, 3% tetra and 1% penta nucleotide motives. Twenty-two primers generated a total of 91 alleles with a mean of 4.14 alleles per locus and 100% polymorphism percentage. A 0.595 average polymorphic information content and 0.662 primer discrimination power values were recorded. The expected and observed heterozygosities were 0.676 and 0.763 respectively. Pair-wise similarity values ranged from 0.06 to 0.89 and the overall cultivars averaged 0.41. The UPGMA cluster analysis recovered by principal coordinate analysis illustrated that cultivars tend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) revealed that genetic variation among and within cultivars were 27% and 73%, respectively according to geographical distribution of cultivars. Conclusions: The developed microsatellite markers are additional values to date palm characterization tools that can be used by researchers in population genetics, cultivar identification as well as genetic resource exploration and management. The tested cultivars exhibited a significant amount of genetic diversity and could be suitable for successful breeding program. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Pigeonpea ( Cajanus cajan L. Millsp.) is a drought tolerant legume of the Fabaceae family and the only cultivated species in the genus Cajanus. It is mainly cultivated in the semi-arid tropics of Asia and Oceania, Africa and America. In Malawi, it is grown as a source of food and income and for soil improvement in intercropping systems. However, varietal contamination due to natural outcrossing causes significant quality reduction and yield losses. In this study, 48 polymorphic SSR markers were used to assess the diversity among all pigeonpea varieties cultivated in Malawi to determine if a genetic fingerprint could be identified to distinguish the popular varieties. Results: A total of 212 alleles were observed with an average of 5.58 alleles per marker and a maximum of 14 alleles produced by CCttc019 (Marker 40). Polymorphic information content (PIC), ranged from 0.03 to 0.89 with an average of 0.30. A neighbor-joining tree produced 4 clusters. The most commonly cultivated varieties, which include released varieties and cultivated land races, were well-spread across all the clusters observed, indicating that they generally represented the genetic diversity available in Malawi, although substantial variation was evident that can still be exploited through further breeding. Conclusion: Screening of the allelic data associated with the five most popular cultivated varieties, revealed 6 markers – CCB1, CCB7, Ccac035, CCttc003, Ccac026 and CCttc019 – which displayed unique allelic profiles for each of the five varieties. This genetic fingerprint can potentially be applied for seed certification to confirm the genetic purity of seeds that are delivered to Malawi farmers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La variation phénotypique est essentielle à la persistance des organismes dans le temps ainsi qu’à la colonisation de nouveaux habitats. Les principales sources de variation phénotypique sont la génétique et l'épigénétique. L'épigénétique a été proposé comme un atout important pour les organismes asexués pour compenser le manque de diversité génétique. L'objectif de cette étude est d'évaluer si l’absence de variation génétique est compensée par l'épigénétique en comparant les profils de méthylation d’individus gynogènes et kleptogènes des hybrides de salamandre à points bleus. Les individus échantillonnés s’organisent en cinq groupes génétiquement différenciés, provenant du même haplome paternel A. jeffersonianum. Deux des cinq groupes sont exclusivement gynogènes, pour des raisons écologiques ou génomiques. Les trois autres groupes sont formés d’individus parfois kleptogènes, car ils présentent une variation génétique plus élevée au sein d’un site qu’entre les sites, en plus de porter des allèles très divergents par rapport à la distribution globale des allèles hybrides, trouvés en haute fréquence dans les populations sympatriques de A. laterale. Les patrons épigénétiques sont variables et distincts entre les cinq groupes génétiques. Les groupes gynogènes sont les seuls à présenter un effet environnemental significatif sur leurs patrons épigénétiques, suggérant que ces individus clonaux doivent être en mesure de maximiser leur potentiel de variation épigénétique pour faire face à des variations environnementales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Little information is available on the patterns of genetic connectivity in owls. We studied the genetic structure of the eagle owl Bubo bubo (Linnaeus, 1758) in southeastern Spain at two different spatial scales. Seven microsatellites previously described for this species were used, although only six loci amplified correctly. The observed low genetic variation could be explained by the short dispersal distance, high mortality rate and high degree of monogamy shown by this large nocturnal predator. As expected, the highest genetic isolation was detected in the geographically most isolated population. Significant genetic differentiation was found among study units separated by less than 50 km. The territorial analysis showed interesting connectivity patterns related with the gene flow and turnover rate of the breeding individuals. The lowest genetic diversity was found in the region with the largest population, which could imply incipient inbreeding.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In salmonids, the release of hatchery-reared fish has been shown to cause irreversible genetic impacts on wild populations. However, although responsible practices for producing and releasing genetically diverse, hatchery-reared juveniles have been published widely, they are rarely implemented. Here, we investigated genetic differences between wild and early-generation hatchery-reared populations of the purple sea urchin Paracentrotus lividus (a commercially important species in Europe) to assess whether hatcheries were able to maintain natural levels of genetic diversity. To test the hypothesis that hatchery rearing would cause bottleneck effects (that is, a substantial reduction in genetic diversity and differentiation from wild populations), we compared the levels and patterns of genetic variation between two hatcheries and four nearby wild populations, using samples from both Spain and Ireland. We found that hatchery-reared populations were less diverse and had diverged significantly from the wild populations, with a very small effective population size and a high degree of relatedness between individuals. These results raise a number of concerns about the genetic impacts of their release into wild populations, particularly when such a degree of differentiation can occur in a single generation of hatchery rearing. Consequently, we suggest that caution should be taken when using hatchery-reared individuals to augment fisheries, even for marine species with high dispersal capacity, and we provide some recommendations to improve hatchery rearing and release practices. Our results further highlight the need to consider the genetic risks of releasing hatchery-reared juveniles into the wild during the establishment of restocking, stock enhancement and sea ranching programs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coastal lagoons are highly variable environments that may act as hotspots of genetic diversity as a consequence of their ecological role as nursery habitats of marine species with both ecological and fisheries importance. The edible cockle (Cerastoderma edule) is a commercially important shellfish resource inhabiting coastal lagoons in Europe and their fisheries management urgently needs genetic studies to design appropriate strategies to promote the recovery of exploited populations. The aim of this study was to assess the C. edule genetic diversity and population structure at a small geographic scale, inside Ria Formosa coastal lagoon (southern Portugal) using mitochondrial cytochrome oxidase I sequences in six locations. Outcomes pointed to a common pattern of high haplotype diversity and non-significant genetic structuring inside the Ria Formosa lagoon. A high level of gene flow was detected between all localities and the presence of a single stock from a genetic point of view may be considered for fisheries management purposes. The existence of a high number of haplotypes and high values of haplotype diversity of C. edule in Ria Formosa lagoon could be consistent with the hypothesis that higher genetic diversity is expected in populations occurring in coastal lagoons, suggesting that lagoons could increase standing genetic variation and an adaptive potential of lagoon populations as an ecological response to a highly variable environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coastal lagoons are considered one of the most productive areas of our planet harboring a large variety of habitats. Their transitional character, between terrestrial and marine environments, creates a very particular ecosystem with important variations of its environmental conditions. The organisms that are able to survive on these ecosystems frequently experience strong selective pressures and constrictions to gene flowwith marine populations, which could contribute to genetic divergence among populations inhabiting coastal lagoon and marine environments. Therefore, the main aims of this study are to asses the genetic diversity and population structure of Holothuria arguinensis across geographical ranges, to test the hypothesis of coastal lagoons as hotspots of genetic diversity in the Ria Formosa lagoon, and to determine the role of exporting standing genetic variation from the lagoon to open sea and their implications to recent geographical expansion events. To reach these objectives, we investigate the genetic structure of H. arguinensis using two mitochondrial DNA markers (COI and 16S) at different spatial scales: i) small, inside Ria Formosa coastal lagoon, South Portugal; 2) large, including most of the geographical distribution of this species (South and Western Portuguese coast and Canary islands); these results will allow us to compare the genetic diversity of lagoonal and marine populations of H. arguinensis. On this framework, its recent geographical expansion events, recorded by Rodrigues (2012) and González-Wangüemert and Borrero-Pérez (2012), will be analyzed considering the potential contribution from lagoonal genetic pool. Non-significant genetic structure and high haplotypic diversity were found inside the Ria Formosa coastal lagoon. Both genes were unable to detect significant genetic differentiation among lagoonal and marine localities, suggesting a high rate of gene flow. The results supported our hypotheses that coastal lagoons are not only acting as hotspots of genetic diversity, but also contributing for the genetic variability of the species, working as a source of new haplotypes and enhancing adaptation to the high variable conditions. Different genetic patterns of colonization were found on H. arguinensis, but they must be studied more deeply.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Recurrent spontaneous abortion is one of the diseases that can lead to physical, psychological, and, economical problems for both individuals and society. Recently a few numbers of genetic polymorphisms in kinase insert domain-containing receptor (KDR) gene are examined that can endanger the life of the fetus in pregnant women. Objective: The risk of KDR gene polymorphisms was investigated in Iranian women with idiopathic recurrent spontaneous abortion (RSA). Materials and Methods: A case controlled study was performed. One hundred idiopathic recurrent spontaneous abortion patients with at least two consecutive pregnancy losses before 20 weeks of gestational age with normal karyotypes were included in the study. Also, 100 healthy women with at least one natural pregnancy were studied as control group. Two functional SNPs located in KDR gene; rs1870377 (Q472H), and rs2305948 (V297I) as well as one tag SNP in the intron region (rs6838752) were genotyped by using PCR based restriction fragment length polymorphism (PCR-RFLP) technique. Haplotype frequency was determined for these three SNPs’ genotypes. Analysis of genetic STRUCTURE and K means clustering were performed to study genetic variation. Results: Functional SNP (rs1870377) was highly linked to tag SNP (rs6838752) (D´ value=0. 214; χ2 = 16.44, p<0. 001). K means clustering showed that k = 8 as the best fit for the optimal number of genetic subgroups in our studied materials. This result was in agreement with Neighbor Joining cluster analysis. Conclusion: In our study, the allele and genotype frequencies were not associated with RSA between patient and control individuals. Inconsistent results in different populations with different allele frequencies among RSA patients and controls may be due to ethnic variation and used sample size.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Because males and females of a species express many homologous traits, sex-specific selection on these traits can shift the opposite sex away from its phenotypic optimum. This mode of sexually antagonistic selection, known as intralocus sexual conflict (IaSC), arises when the evolution of sexual dimorphism is constrained by the two sexes sharing a common gene pool. As IaSC has been historically overlooked, many outstanding questions remain. For example, what is its contribution in maintaining genetic variation for fitness in populations? What characters underlie this variation in fitness? How does the selection history of the population influence the standing genetic variation? I used the model organism Drosophila melanogaster to attempt to resolve some of these questions. The first part of my Master’s project involved assessing the detectability of sexually antagonistic alleles in populations at different stages of adaptation to the laboratory. For the second part of my Master’s project, I looked for evidence of conflict during the development of body size, a well-known sexually dimorphic trait. While the first part of my thesis proved inconclusive, the second part revealed a surprising source of sexual conflict in pre-adult stages of D. melanogaster.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The role of common, low to intermediate risk alleles in breast cancer need to be examined due to their relatively high prevalence. Among many cellular pathways, replication has a pivotal role in cell division and frequently targeted during carcinogenesis. Replication is governed by a host of genes involved in a number of different pathways. This study investigates the effects of replication-gene variants in relation to breast cancer and how this relationship is affected by ethnicity, menopausal status and breast tumour subtype. Methods: Data from a case-control study with 997 incident breast cancer cases and 1,050 age frequency matched controls in Vancouver, British Columbia and Kingston, Ontario were used. Unconditional logistic regression was used to calculate odds ratios between 45 replication gene variants and breast cancer risk, assuming an additive genetic model adjusted for age and centre, presented for Europeans and East Asians separately. Polytomous logistic regression was used to assess odds ratios between each SNP and four breast cancer subtypes defined by hormone receptor status among Europeans. All analyses were stratified by menopausal status. The Benjamini–Hochberg false discovery rate (FDR) was used to address multiple comparisons. Results: Among Europeans, the SNPs in FGFR2, TOX3 and 11q13 loci were associated with breast cancer after controlling for multiple comparisons. Test of heterogeneity showed the SNPs rs1045185, rs4973768, rs672888, rs1219648, rs2420946 among Europeans and rs889312 among East Asians conferred differential risk across the tumour subtypes. Conclusions: Specific SNPs in replication genes were associated with breast cancer, and the risk level differed by tumour subtype defined by ER/PR/Her2 status and ethnicity.