930 resultados para abstract optimization problems
Resumo:
La constante evolución de dispositivos portátiles multimedia que se ha producido en la última década ha provocado que hoy en día se disponga de una amplia variedad de dispositivos con capacidad para reproducir contenidos multimedia. En consecuencia, la reproducción de esos contenidos en dichos terminales lleva asociada disponer de procesadores que soporten una alta carga computacional, ya que las tareas de descodificación y presentación de video así lo requieren. Sin embargo, un procesador potente trabajando a elevadas frecuencias provoca un elevado consumo de la batería, y dado que se pretende trabajar con dispositivos portátiles, la vida útil de la batería se convierte en un asunto de especial importancia. La problemática que se plantea se ha convertido en una de las principales líneas de investigación del Grupo de Investigación GDEM (Grupo de Diseño Electrónico y Microelectrónico). En esta línea de trabajo, se persigue cómo optimizar el consumo de energía en terminales portables desde el punto de vista de la reducción de la calidad de experiencia del usuario a cambio de una mayor autonomía del terminal. Por tanto, para lograr esa reducción de la calidad de experiencia mencionada, se requiere un estándar de codificación de vídeo que así lo permita. El Grupo de Investigación GDEM cuenta con experiencia en el estándar de vídeo escalable H.264/SVC, el cual permite degradar la calidad de experiencia en función de las necesidades/características del dispositivo. Más concretamente, un video escalable contiene embebidas distintas versiones del video original que pueden ser descodificadas en diferentes resoluciones, tasas de cuadro y calidades (escalabilidades espacial, temporal y de calidad respectivamente), permitiendo una adaptación rápida y muy flexible. Seleccionado el estándar H.264/SVC para las tareas de vídeo, se propone trabajar con Mplayer, un reproductor de vídeos de código abierto (open source), al cual se le ha integrado un descodificador para vídeo escalable denominado OpenSVC. Por último, como dispositivo portable se trabajará con la plataforma de desarrollo BeagleBoard, un sistema embebido basado en el procesador OMAP3530 que permite modificar la frecuencia de reloj y la tensión de alimentación dinámicamente reduciendo de este modo el consumo del terminal. Este procesador a su vez contiene integrados un procesador de propósito general (ARM Cortex-A8) y un procesador digital de señal (DSP TMS320C64+TM). Debido a la alta carga computacional de la descodificación de vídeos escalables y la escasa optimización del ARM para procesamiento de datos, se propone llevar a cabo la ejecución de Mplayer en el ARM y encargar la tarea de descodificación al DSP, con la finalidad de reducir el consumo y por tanto aumentar la vida útil del sistema embebido sobre el cual se ejecutará la aplicación desarrollada. Una vez realizada esa integración, se llevará a cabo una caracterización del descodificador alojado en el DSP a través de una serie de medidas de rendimiento y se compararán los resultados con los obtenidos en el proceso de descodificación realizado únicamente en el ARM. ABSTRACT During the last years, the multimedia portable terminals have gradually evolved causing that nowadays a several range of devices with the ability of playing multimedia contents are easily available for everyone. Consequently, those multimedia terminals must have high-performance processors to play those contents because the coding and decoding tasks demand high computational load. However, a powerful processor performing to high frequencies implies higher battery consumption, and this issue has become one of the most important problems in the development cycle of a portable terminal. The power/energy consumption optimization on multimedia terminals has become in one the most significant work lines in the Electronic and Microelectronic Research Group of the Universidad Politécnica de Madrid. In particular, the group is researching how to reduce the user‟s Quality of Experience (QoE) quality in exchange for increased battery life. In order to reduce the Quality of Experience (QoE), a standard video coding that allows this operation is required. The H.264/SVC allows reducing the QoE according to the needs/characteristics of the terminal. Specifically, a scalable video contains different versions of original video embedded in an only one video stream, and each one of them can be decoded in different resolutions, frame rates and qualities (spatial, temporal and quality scalabilities respectively). Once the standard video coding is selected, a multimedia player with support for scalable video is needed. Mplayer has been proposed as a multimedia player, whose characteristics (open-source, enormous flexibility and scalable video decoder called OpenSVC) are the most suitable for the aims of this Master Thesis. Lastly, the embedded system BeagleBoard, based on the multi-core processor OMAP3530, will be the development platform used in this project. The multimedia terminal architecture is based on a commercial chip having a General Purpose Processor (GPP – ARM Cortex A8) and a Digital Signal Processor (DSP, TMS320C64+™). Moreover, the processor OMAP3530 has the ability to modify the operating frequency and the supply voltage in a dynamic way in order to reduce the power consumption of the embedded system. So, the main goal of this Master Thesis is the integration of the multimedia player, MPlayer, executed at the GPP, and scalable video decoder, OpenSVC, executed at the DSP in order to distribute the computational load associated with the scalable video decoding task and to reduce the power consumption of the terminal. Once the integration is accomplished, the performance of the OpenSVC decoder executed at the DSP will be measured using different combinations of scalability values. The obtained results will be compared with the scalable video decoding performed at the GPP in order to show the low optimization of this kind of architecture for decoding tasks in contrast to DSP architecture.
Resumo:
Non-failure analysis aims at inferring that predicate calis in a program will never fail. This type of information has many applications in functional/logic programming. It is essential for determining lower bounds on the computational cost of calis, useful in the context of program parallelization, instrumental in partial evaluation and other program transformations, and has also been used in query optimization. In this paper, we re-cast the non-failure analysis proposed by Debray et al. as an abstract interpretation, which not only allows to investígate it from a standard and well understood theoretical framework, but has also several practical advantages. It allows us to incorpórate non-failure analysis into a standard, generic abstract interpretation engine. The analysis thus benefits from the fixpoint propagation algorithm, which leads to improved information propagation. Also, the analysis takes advantage of the multi-variance of the generic engine, so that it is now able to infer sepárate non-failure information for different cali patterns. Moreover, the implementation is simpler, and allows to perform non-failure and covering analyses alongside other analyses, such as those for modes and types, in the same framework. Finally, besides the precisión improvements and the additional simplicity, our implementation (in the Ciao/CiaoPP multiparadigm programming system) also shows better efRciency.
Resumo:
Abstract is not available.
Resumo:
The aim of program specialization is to optimize programs by exploiting certain knowledge about the context in which the program will execute. There exist many program manipulation techniques which allow specializing the program in different ways. Among them, one of the best known techniques is partial evaluation, often referred to simply as program specialization, which optimizes programs by specializing them for (partially) known input data. In this work we describe abstract specialization, a technique whose main features are: (1) specialization is performed with respect to "abstract" valúes rather than "concrete" ones, and (2) abstract interpretation rather than standard interpretation of the program is used in order to propágate information about execution states. The concept of abstract specialization is at the heart of the specialization system in CiaoPP, the Ciao system preprocessor. In this paper we present a unifying view of the different specialization techniques used in CiaoPP and discuss their potential applications by means of examples. The applications discussed include program parallelization, optimization of dynamic scheduling (concurreney), and integration of partial evaluation techniques.
Resumo:
The technique of Abstract Interpretation [13] has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. However, recently, novel and promising applications of semantic approximations have been proposed in the more general context of program verification and debugging [3],[10],[7].
Resumo:
We present a tutorial overview of Ciaopp, the Ciao system preprocessor. Ciao is a public-domain, next-generation logic programming system, which subsumes ISO-Prolog and is specifically designed to a) be highly extensible via librarles and b) support modular program analysis, debugging, and optimization. The latter tasks are performed in an integrated fashion by Ciaopp. Ciaopp uses modular, incremental abstract interpretation to infer properties of program predicates and literals, including types, variable instantiation properties (including modes), non-failure, determinacy, bounds on computational cost, bounds on sizes of terms in the program, etc. Using such analysis information, Ciaopp can find errors at compile-time in programs and/or perform partial verification. Ciaopp checks how programs cali system librarles and also any assertions present in the program or in other modules used by the program. These assertions are also used to genérate documentation automatically. Ciaopp also uses analysis information to perform program transformations and optimizations such as múltiple abstract specialization, parallelization (including granularity control), and optimization of run-time tests for properties which cannot be checked completely at compile-time. We illustrate "hands-on" the use of Ciaopp in all these tasks. By design, Ciaopp is a generic tool, which can be easily tailored to perform these and other tasks for different LP and CLP dialects.
Resumo:
Recent approaches to mobile code safety, like proof- arrying code, involve associating safety information to programs. The code supplier provides a program and also includes with it a certifícate (or proof) whose validity entails compliance with a predefined safety policy. The intended benefit is that the program consumer can locally validate the certifícate w.r.t. the "untrusted" program by means of a certifícate checker—a process which should be much simpler, eflicient, and automatic than generating the original proof. We herein introduce a novel approach to mobile code safety which follows a similar scheme, but which is based throughout on the use of abstract interpretation techniques. In our framework the safety policy is specified by using an expressive assertion language defined over abstract domains. We identify a particular slice of the abstract interpretation-based static analysis results which is especially useful as a certifícate. We propose an algorithm for checking the validity of the certifícate on the consumer side which is itself in fact a very simplified and eflicient specialized abstract-interpreter. Our ideas are illustrated through an example implemented in the CiaoPP system. Though further experimentation is still required, we believe the proposed approach is of interest for bringing the automation and expressiveness which is inherent in the abstract interpretation techniques to the área of mobile code safety.
Resumo:
Los problemas de programación de tareas son muy importantes en el mundo actual. Se puede decir que se presentan en todos los fundamentos de la industria moderna, de ahí la importancia de que estos sean óptimos, de forma que se puedan ahorrar recursos que estén asociados al problema. La programación adecuada de trabajos en procesos de manufactura, constituye un importante problema que se plantea dentro de la producción en muchas empresas. El orden en que estos son procesados, no resulta indiferente, sino que determinará algún parámetro de interés, cuyos valores convendrá optimizar en la medida de lo posible. Así podrá verse afectado el coste total de ejecución de los trabajos, el tiempo necesario para concluirlos o el stock de productos en curso que será generado. Esto conduce de forma directa al problema de determinar cuál será el orden más adecuado para llevar a cabo los trabajos con vista a optimizar algunos de los anteriores parámetros u otros similares. Debido a las limitaciones de las técnicas de optimización convencionales, en la presente tesis se presenta una metaheurística basada en un Algoritmo Genético Simple (Simple Genetic Algorithm, SGA), para resolver problemas de programación de tipo flujo general (Job Shop Scheduling, JSS) y flujo regular (Flow Shop Scheduling, FSS), que están presentes en un taller con tecnología de mecanizado con el objetivo de optimizar varias medidas de desempeño en un plan de trabajo. La aportación principal de esta tesis, es un modelo matemático para medir el consumo de energía, como criterio para la optimización, de las máquinas que intervienen en la ejecución de un plan de trabajo. Se propone además, un método para mejorar el rendimiento en la búsqueda de las soluciones encontradas, por parte del Algoritmo Genético Simple, basado en el aprovechamiento del tiempo ocioso. ABSTRACT The scheduling problems are very important in today's world. It can be said to be present in all the basics of modern industry, hence the importance that these are optimal, so that they can save resources that are associated with the problem. The appropriate programming jobs in manufacturing processes is an important problem that arises in production in many companies. The order in which they are processed, it is immaterial, but shall determine a parameter of interest, whose values agree optimize the possible. This may be affected the total cost of execution of work, the time needed to complete them or the stock of work in progress that will be generated. This leads directly to the problem of determining what the most appropriate order to carry out the work in order to maximize some of the above parameters or other similar. Due to the limitations of conventional optimization techniques, in this work present a metaheuristic based on a Simple Genetic Algorithm (Simple Genetic Algorithm, SGA) to solve programming problems overall flow rate (Job Shop Scheduling, JSS) and regular flow (Flow Shop Scheduling, FSS), which are present in a workshop with machining technology in order to optimize various performance measures in a plan. The main contribution of this thesis is a mathematical model to measure the energy consumption as a criterion for the optimization of the machines involved in the implementation of a work plan. It also proposes a method to improve performance in finding the solutions, by the simple genetic algorithm, based on the use of idle time.
Resumo:
We present in a tutorial fashion CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system libraries), to generate and simplify run-time tests, and to perform high-level program transformations such as multiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on resource consumption (time or space cost).
Resumo:
Con el surgir de los problemas irresolubles de forma eficiente en tiempo polinomial en base al dato de entrada, surge la Computación Natural como alternativa a la computación clásica. En esta disciplina se trata de o bien utilizar la naturaleza como base de cómputo o bien, simular su comportamiento para obtener mejores soluciones a los problemas que los encontrados por la computación clásica. Dentro de la computación natural, y como una representación a nivel celular, surge la Computación con Membranas. La primera abstracción de las membranas que se encuentran en las células, da como resultado los P sistemas de transición. Estos sistemas, que podrían ser implementados en medios biológicos o electrónicos, son la base de estudio de esta Tesis. En primer lugar, se estudian las implementaciones que se han realizado, con el fin de centrarse en las implementaciones distribuidas, que son las que pueden aprovechar las características intrínsecas de paralelismo y no determinismo. Tras un correcto estudio del estado actual de las distintas etapas que engloban a la evolución del sistema, se concluye con que las distribuciones que buscan un equilibrio entre las dos etapas (aplicación y comunicación), son las que mejores resultados presentan. Para definir estas distribuciones, es necesario definir completamente el sistema, y cada una de las partes que influyen en su transición. Además de los trabajos de otros investigadores, y junto a ellos, se realizan variaciones a los proxies y arquitecturas de distribución, para tener completamente definidos el comportamiento dinámico de los P sistemas. A partir del conocimiento estático –configuración inicial– del P sistema, se pueden realizar distribuciones de membranas en los procesadores de un clúster para obtener buenos tiempos de evolución, con el fin de que la computación del P sistema sea realizada en el menor tiempo posible. Para realizar estas distribuciones, hay que tener presente las arquitecturas –o forma de conexión– de los procesadores del clúster. La existencia de 4 arquitecturas, hace que el proceso de distribución sea dependiente de la arquitectura a utilizar, y por tanto, aunque con significativas semejanzas, los algoritmos de distribución deben ser realizados también 4 veces. Aunque los propulsores de las arquitecturas han estudiado el tiempo óptimo de cada arquitectura, la inexistencia de distribuciones para estas arquitecturas ha llevado a que en esta Tesis se probaran las 4, hasta que sea posible determinar que en la práctica, ocurre lo mismo que en los estudios teóricos. Para realizar la distribución, no existe ningún algoritmo determinista que consiga una distribución que satisfaga las necesidades de la arquitectura para cualquier P sistema. Por ello, debido a la complejidad de dicho problema, se propone el uso de metaheurísticas de Computación Natural. En primer lugar, se propone utilizar Algoritmos Genéticos, ya que es posible realizar alguna distribución, y basada en la premisa de que con la evolución, los individuos mejoran, con la evolución de dichos algoritmos, las distribuciones también mejorarán obteniéndose tiempos cercanos al óptimo teórico. Para las arquitecturas que preservan la topología arbórea del P sistema, han sido necesarias realizar nuevas representaciones, y nuevos algoritmos de cruzamiento y mutación. A partir de un estudio más detallado de las membranas y las comunicaciones entre procesadores, se ha comprobado que los tiempos totales que se han utilizado para la distribución pueden ser mejorados e individualizados para cada membrana. Así, se han probado los mismos algoritmos, obteniendo otras distribuciones que mejoran los tiempos. De igual forma, se han planteado el uso de Optimización por Enjambres de Partículas y Evolución Gramatical con reescritura de gramáticas (variante de Evolución Gramatical que se presenta en esta Tesis), para resolver el mismo cometido, obteniendo otro tipo de distribuciones, y pudiendo realizar una comparativa de las arquitecturas. Por último, el uso de estimadores para el tiempo de aplicación y comunicación, y las variaciones en la topología de árbol de membranas que pueden producirse de forma no determinista con la evolución del P sistema, hace que se deba de monitorizar el mismo, y en caso necesario, realizar redistribuciones de membranas en procesadores, para seguir obteniendo tiempos de evolución razonables. Se explica, cómo, cuándo y dónde se deben realizar estas modificaciones y redistribuciones; y cómo es posible realizar este recálculo. Abstract Natural Computing is becoming a useful alternative to classical computational models since it its able to solve, in an efficient way, hard problems in polynomial time. This discipline is based on biological behaviour of living organisms, using nature as a basis of computation or simulating nature behaviour to obtain better solutions to problems solved by the classical computational models. Membrane Computing is a sub discipline of Natural Computing in which only the cellular representation and behaviour of nature is taken into account. Transition P Systems are the first abstract representation of membranes belonging to cells. These systems, which can be implemented in biological organisms or in electronic devices, are the main topic studied in this thesis. Implementations developed in this field so far have been studied, just to focus on distributed implementations. Such distributions are really important since they can exploit the intrinsic parallelism and non-determinism behaviour of living cells, only membranes in this case study. After a detailed survey of the current state of the art of membranes evolution and proposed algorithms, this work concludes that best results are obtained using an equal assignment of communication and rules application inside the Transition P System architecture. In order to define such optimal distribution, it is necessary to fully define the system, and each one of the elements that influence in its transition. Some changes have been made in the work of other authors: load distribution architectures, proxies definition, etc., in order to completely define the dynamic behaviour of the Transition P System. Starting from the static representation –initial configuration– of the Transition P System, distributions of membranes in several physical processors of a cluster is algorithmically done in order to get a better performance of evolution so that the computational complexity of the Transition P System is done in less time as possible. To build these distributions, the cluster architecture –or connection links– must be considered. The existence of 4 architectures, makes that the process of distribution depends on the chosen architecture, and therefore, although with significant similarities, the distribution algorithms must be implemented 4 times. Authors who proposed such architectures have studied the optimal time of each one. The non existence of membrane distributions for these architectures has led us to implement a dynamic distribution for the 4. Simulations performed in this work fix with the theoretical studies. There is not any deterministic algorithm that gets a distribution that meets the needs of the architecture for any Transition P System. Therefore, due to the complexity of the problem, the use of meta-heuristics of Natural Computing is proposed. First, Genetic Algorithm heuristic is proposed since it is possible to make a distribution based on the premise that along with evolution the individuals improve, and with the improvement of these individuals, also distributions enhance, obtaining complexity times close to theoretical optimum time. For architectures that preserve the tree topology of the Transition P System, it has been necessary to make new representations of individuals and new algorithms of crossover and mutation operations. From a more detailed study of the membranes and the communications among processors, it has been proof that the total time used for the distribution can be improved and individualized for each membrane. Thus, the same algorithms have been tested, obtaining other distributions that improve the complexity time. In the same way, using Particle Swarm Optimization and Grammatical Evolution by rewriting grammars (Grammatical Evolution variant presented in this thesis), to solve the same distribution task. New types of distributions have been obtained, and a comparison of such genetic and particle architectures has been done. Finally, the use of estimators for the time of rules application and communication, and variations in tree topology of membranes that can occur in a non-deterministic way with evolution of the Transition P System, has been done to monitor the system, and if necessary, perform a membrane redistribution on processors to obtain reasonable evolution time. How, when and where to make these changes and redistributions, and how it can perform this recalculation, is explained.
Resumo:
Abstract interpretation-based data-flow analysis of logic programs is at this point relatively well understood from the point of view of general frameworks and abstract domains. On the other hand, comparatively little attention has been given to the problems which arise when analysis of a full, practical dialect of the Prolog language is attempted, and only few solutions to these problems have been proposed to date. Such problems relate to dealing correctly with all builtins, including meta-logical and extra-logical predicates, with dynamic predicates (where the program is modified during execution), and with the absence of certain program text during compilation. Existing proposals for dealing with such issues generally restrict in one way or another the classes of programs which can be analyzed if the information from analysis is to be used for program optimization. This paper attempts to fill this gap by considering a full dialect of Prolog, essentially following the recently proposed ISO standard, pointing out the problems that may arise in the analysis of such a dialect, and proposing a combination of known and novel solutions that together allow the correct analysis of arbitrary programs using the full power of the language.
Resumo:
García et al. present a class of column generation (CG) algorithms for nonlinear programs. Its main motivation from a theoretical viewpoint is that under some circumstances, finite convergence can be achieved, in much the same way as for the classic simplicial decomposition method; the main practical motivation is that within the class there are certain nonlinear column generation problems that can accelerate the convergence of a solution approach which generates a sequence of feasible points. This algorithm can, for example, accelerate simplicial decomposition schemes by making the subproblems nonlinear. This paper complements the theoretical study on the asymptotic and finite convergence of these methods given in [1] with an experimental study focused on their computational efficiency. Three types of numerical experiments are conducted. The first group of test problems has been designed to study the parameters involved in these methods. The second group has been designed to investigate the role and the computation of the prolongation of the generated columns to the relative boundary. The last one has been designed to carry out a more complete investigation of the difference in computational efficiency between linear and nonlinear column generation approaches. In order to carry out this investigation, we consider two types of test problems: the first one is the nonlinear, capacitated single-commodity network flow problem of which several large-scale instances with varied degrees of nonlinearity and total capacity are constructed and investigated, and the second one is a combined traffic assignment model
Resumo:
We report and correct an error in [Opt. Express 20, 9726–9735 (2012)]. The author list has been modified. All other contents are unchanged.
Resumo:
Social behaviour is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks.
Resumo:
Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.