1000 resultados para ZnMgS : Mn2 nanoparticles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A broad absorption band around 500 nm is observed in ZnS nanoparticles. The absorption becomes more intensive and shifts to the blue as the particle size is decreased. The absorption energy is lower than the band gap of the particles and is considered to be caused by the surface states. This assignment is supported by the results of the fluorescence and of the thermoluminescence of the surface states. Both the absorption and the fluorescence reveal that the surface states are size dependent. The glow peak of the semiconductor particles is not varied as much upon decreasing size, indicating the trap depth of the surface states is not sensitive to the particle size. Considering these results, a new model on the size dependence of the surface states is proposed, which may explain our observations reasonably. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermoluminescence (TL) of ZnS nanoparticles is reported. The TL intensity increases as the particle size is decreased. The consistency of the size dependence of the TL with that of the surface fluorescence indicates that the TL may be related to the surface states. TL may be caused by the recombination of carriers released from the surface states or defect sites by heating. Smaller particles have higher surface/volume ratio and more surface states, therefore contain more accessible carriers for TL. Besides, the carrier recombination rate increases upon decreasing size due to the increase of the overlap between the electron and hole wave functions. These two effects may make the TL increase upon decreasing size of the particles. The appearance of TL prior to any radiation reveals that trapped carriers have pre-existed. The investigation of TL may provide some useful information about the surface states that may explain the size dependence of the surface fluorescence. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of Nd3+-doped LaF3 nanoparticles with Nd3+ concentrations from 0.5 to 10 mol% were synthesized. The fluorescence intensity and lifetime of the nanoparticles at various Nd3+ doping concentration were investigated. The nanoparticles displayed strongest fluorescence intensity at 3 mol% Nd3+ concentration. Eighty-eight percentage quantum efficiency was obtained when the Nd3+ concentration was 0.5 mol%. Optical properties of nanoparticles were studied according to Judd-Ofelt theory. A larger emission cross-section, sigma(em), for F-4(3/2) -> I-4(11/2) transition of the Nd3+ ion was obtained as 3.21 x 10(-20) cm(2), which was two times of the currently reported value. The larger emission cross-section and strong fluorescence intensity demonstrate that these nanoparticles are promising materials for laser applications. (C) 2010 Published by Elsevier B. V.