880 resultados para Ziegler-Nichols
Resumo:
Data assimilation is a sophisticated mathematical technique for combining observational data with model predictions to produce state and parameter estimates that most accurately approximate the current and future states of the true system. The technique is commonly used in atmospheric and oceanic modelling, combining empirical observations with model predictions to produce more accurate and well-calibrated forecasts. Here, we consider a novel application within a coastal environment and describe how the method can also be used to deliver improved estimates of uncertain morphodynamic model parameters. This is achieved using a technique known as state augmentation. Earlier applications of state augmentation have typically employed the 4D-Var, Kalman filter or ensemble Kalman filter assimilation schemes. Our new method is based on a computationally inexpensive 3D-Var scheme, where the specification of the error covariance matrices is crucial for success. A simple 1D model of bed-form propagation is used to demonstrate the method. The scheme is capable of recovering near-perfect parameter values and, therefore, improves the capability of our model to predict future bathymetry. Such positive results suggest the potential for application to more complex morphodynamic models.
Resumo:
The extent to which the four-dimensional variational data assimilation (4DVAR) is able to use information about the time evolution of the atmosphere to infer the vertical spatial structure of baroclinic weather systems is investigated. The singular value decomposition (SVD) of the 4DVAR observability matrix is introduced as a novel technique to examine the spatial structure of analysis increments. Specific results are illustrated using 4DVAR analyses and SVD within an idealized 2D Eady model setting. Three different aspects are investigated. The first aspect considers correcting errors that result in normal-mode growth or decay. The results show that 4DVAR performs well at correcting growing errors but not decaying errors. Although it is possible for 4DVAR to correct decaying errors, the assimilation of observations can be detrimental to a forecast because 4DVAR is likely to add growing errors instead of correcting decaying errors. The second aspect shows that the singular values of the observability matrix are a useful tool to identify the optimal spatial and temporal locations for the observations. The results show that the ability to extract the time-evolution information can be maximized by placing the observations far apart in time. The third aspect considers correcting errors that result in nonmodal rapid growth. 4DVAR is able to use the model dynamics to infer some of the vertical structure. However, the specification of the case-dependent background error variances plays a crucial role.